7 research outputs found

    MR imaging of the anatomy of the anterior horn of the medial meniscus

    No full text
    Background: In cadaveric and arthroscopic studies different insertion locations of the anterior horn of the medial meniscus (AHMM) have been described. Purpose: To investigate if the different insertion locations of the AHMM, as described in cadaveric studies, can be determined on magnetic resonance imaging (MRI). Material and Methods: MR images of 100 patients without meniscal tears on MRI were retrospectively evaluated. Two observers classified the AHMM insertion based on its position relative to the anterior tibial edge and the medial tibial spine. The association between AHMM insertion and tibial plateau slope, meniscal radial displacement, and anterior intermeniscal ligament (AIL) presence was investigated. Results: The AHMM inserted posterior to the anterior tibial edge in 93 knees and anterior to the tibial edge in seven knees (= type III). Of the 93 knees with AHMM insertion posterior to the anterior tibial edge, 63 inserted lateral to the medial tibial spine (= type I) and 30 medial (= type II). The AHMMs inserting anterior to the tibial edge had a significantly (P 0.05). A strong inter-and intraobserver agreement was observed. Conclusion: Three different bony insertion locations of the AHMM, as described in cadaveric studies, could be identified on MRI. All AHMMs inserting anterior to the tibial edge displayed an AIL. Whether there is a clinical correlation with these insertion patterns remains unclear

    Subsynovial epidermal inclusion cyst of the knee

    No full text
    We report a case of a subsynovial epidermal inclusion cyst in a 47-year-old woman with a painful spontaneous swelling of the right knee and a 2-year history of puncture and arthroscopy. Epidermal inclusion cysts are one of the most common benign subcutaneous tumours. Very rarely, they are located in an articulation and can cause an inflammatory reaction when rupture occurs. Simple surgical excision is the preferred therapy. The main goal of this case report is to include the possibility of an intra-articular epidermal inclusion cyst into the differential when imaging shows an intra-articular structure, and more so if there is a history of trauma, intra-articular puncture or arthroscopy

    The intrinsic subtalar ligaments have a consistent presence, location and morphology.

    No full text
    BACKGROUND: Chronic subtalar instability is a disabling complication after acute ankle sprains. Currently, the literature describing the anatomy of the intrinsic subtalar ligaments is limited and equivocal which causes difficulties in diagnosis and treatment of subtalar instability. The purpose of this study is to assess the anatomical characteristics of the subtalar ligaments and to clarify some points of confusion. METHODS: In 16 cadaveric feet, the dimensions and locations of the subtalar ankle ligaments were assessed and measured. CT-scans before dissection and after indication of the footprints with radio-opaque paint allowed to generate 3D models and assess the footprint characteristics. RESULTS: The cervical ligament (CL) had similar dimensions as the lateral ligaments: anterior length 13.9 ± 1.5 mm, posterior length 18.5 ± 2.9 mm, talar width 13.6 ± 2.2 mm, calcaneal width 15.8 ± 3.7 mm. The anterior capsular ligament (ACaL) and interosseous talocalcaneal ligament (ITCL) were found to be smaller structures with consistent dimensions and locations. CONCLUSION: This study identified consistent characteristics of the intrinsic subtalar ligaments and clarifies the local anatomical situation. The dimensions and footprints of the intrinsic ligaments of the subtalar joint suggest a more important role of the CL and ACaL in the stability of the subtalar joint. The results of this study are relevant to improve diagnostic tools and offer some guidelines when reconstructing the injured ligaments.status: Published onlin

    An oblique fibular tunnel is recommended when reconstructing the ATFL and CFL

    No full text
    PURPOSE: A bone tunnel is often used during the reconstruction of the anterior talofibular ligament (ATFL) and calcaneofibular ligament (CFL). The purpose of this study is to compare proposed directions for drilling this fibular tunnel and to assess potential tunnel length, using a 5-mm-diameter tunnel and surrounding bone. METHODS: Anonymous DICOM data from spiral CT-scan images of the ankle were obtained from 12 Caucasian patients: 6 females and 6 males. Virtual tunnels were generated in a 3D bone model with angles of 30°, 45°, 60° and 90° in relation to the fibular long axis. Several measurements were performed: distance from entrance to perforation of opposing cortex, shortening of the tunnel, distance from tunnel centre to bone surface. RESULTS: A tunnel in a perpendicular direction resulted in an average possible tunnel length of 16.8 (± 2.7) mm in the female group and 20.3 (± 3.4) mm in the male group. A tunnel directed at 30° offered the longest length: 30.9 (± 2.5) mm in the female group and 34.4 (± 2.9) mm in the male group. The use of a 5-mm-diameter tunnel in a perpendicular direction caused important shortening of the tunnel at the entrance in some cases. The perpendicular tunnel was very near to the digital fossa while the most obliquely directed tunnels avoided this region. CONCLUSION: An oblique tunnel allows for a longer tunnel and avoids the region of the digital fossa, thereby retaining more surrounding bone. In addition, absolute values of tunnel length are given, which can be useful when considering the use of certain implants. We recommend drilling an oblique fibular tunnel when reconstructing the ATFL and CFL.status: publishe
    corecore