19 research outputs found

    RGD constructs with physical anchor groups as polymer co-electrospinnable cell adhesives

    Get PDF
    The tissue integration of synthetic polymers can be promoted by displaying RGD peptides at the biointerface with the objective of enhancing colonization of the material by endogenous cells. A firm but flexible attachment of the peptide to the polymer matrix, still allowing interaction with receptors, is therefore of interest. Here, the covalent coupling of flexible physical anchor groups, allowing for temporary immobilization on polymeric surfaces via hydrophobic or dipole–dipole interactions, to a RGD peptide was investigated. For this purpose, a stearate or an oligo(ethylene glycol) (OEG) was attached to GRGDS in 51–69% yield. The obtained RGD linker constructs were characterized by NMR, IR and MALDI-ToF mass spectrometry, revealing that the commercially available OEG and stearate linkers are in fact mixtures of similar compounds. The RGD linker constructs were co-electrospun with poly(p-dioxanone) (PPDO). After electrospinning, nitrogen could be detected on the surface of the PPDO fibers by X-ray photoelectron spectroscopy. The nitrogen content exceeded the calculated value for the homogeneous material mixture suggesting a pronounced presentation of the peptide on the fiber surface. Increasing amounts of RGD linker constructs in the electrospinning solution did not lead to a detection of an increased amount of peptide on the scaffold surface, suggesting inhomogeneous distribution of the peptide on the PPDO fiber surface. Human adipose-derived stem cells cultured on the patches showed similar viability as when cultured on PPDO containing pristine RGD. The fully characterized RGD linker constructs could serve as valuable tools for the further development of tissue-integrating polymeric scaffolds

    The influence of electrospinning parameters on polydioxanone scaffold properties

    Get PDF
    Conduits currently used to reconstruct the right ventricular outflow tract (RVOT) have no growth potential and require reoperations, resulting in an increased level of morbidity and mortality. This work investigates the effect of electrospinning parameters on the mechanical properties and biocompatibility of bioresorbable tubular scaffolds, as part of a program to develop a tissue-engineered valved tube for RVOT replacement. Electrospinning was used to develop tubular scaffolds of polydioxanone, with the experimental parameters systematically varied. Three electrospinning parameters (volume of liquid, flow rate, and speed of mandrel rotation) were investigated, and their effects on the mechanical properties and cellular response of the scaffolds were analysed using scanning electron microscopy, X-ray diffraction, differential scanning calorimetry, gas chromatography, uniaxial tensile tests, cell viability and cytotoxicity assays. Mechanical properties were compared to those of the native RVOT reported in the literature. Increasing the mandrel rotation speed tended to increase fibre alignment slightly, and led to more profound rises in the stress at failure and Young's modulus. An increase in flow rate also increased the rigidity of the tubes. Cell viability and cytotoxicity assays showed all the tubes produced to have excellent biocompatibility. Through variation of the processing parameters, it is possible to tune mechanical properties of medical-grade polymer tubes over a wide range. By using a mandrel rotation speed of 50 rpm and a flow rate of 20 mL/h or higher we can prepare materials with Young's modulus, strain at failure, and tensile stress close to the native tissue. Electrospinning therefore offers great promise in the development of scaffolds to match the properties of the native RVOT, paving the way to a future bioresorbable device to replace the RVOT in children

    Cord blood-circulating endothelial progenitors for treatment of vascular diseases

    Get PDF
    Abstract Adult peripheral blood (PB) endothelial progenitor cells (EPC) are produced in the bone marrow and are able to integrate vascular structures in sites of neoangiogenesis. EPCs thus represent a potential therapeutic tool for ischaemic diseases. However, use of autologous EPCs in cell therapy is limited by their rarity in adult PB. Cord blood (CB) contains more EPCs than PB, and they are functional after expansion. They form primary colonies that give rise to secondary colonies, each yielding more than 10 7 cells after few passages. The number of endothelial cells obtained from one unit of CB is compatible with potential clinical application. EPC colonies can be securely produced, expanded and cryopreserved in close culture devices and endothelial cells produced in these conditions are functional as shown in different in vitro and in vivo assays. As CB EPCderived endothelial cells would be allogeneic to patients, it would be of interest to prepare them from ready-existing CB banks. We show that not all frozen CB units from a CB bank are able to generate EPC colonies in culture, and when they do so, number of colonies is lower than that obtained with fresh CB units. However, endothelial cells derived from frozen CB have the same phenotypical and functional properties than those derived from fresh CB. This indicates that CB cryopreservation should be improved to preserve integrity of stem cells other than haematopoietic ones. Feasibility of using CB for clinical applications will be validated in porcine models of ischaemia. Origin and role of EP

    Polymer-Based Reconstruction of the Inferior Vena Cava in Rat: Stem Cells or RGD Peptide?

    Get PDF
    As part of a program targeted at developing a resorbable valved tube for replacement of the right ventricular outflow tract, we compared three biopolymers (polyurethane [PU], polyhydroxyalkanoate (the poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxyvalerate) [PHBVV]), and polydioxanone [PDO]) and two biofunctionalization techniques (using adipose-derived stem cells [ADSCs] or the arginine-glycine-aspartate [RGD] peptide) in a rat model of partial inferior vena cava (IVC) replacement. Fifty-three Wistar rats first underwent partial replacement of the IVC with an acellular electrospun PDO, PU, or PHBVV patch, and 31 nude rats subsequently underwent the same procedure using a PDO patch biofunctionalized either by ADSC or RGD. Results were assessed both in vitro (proliferation and survival of ADSC seeded onto the different materials) and in vivo by magnetic resonance imaging (MRI), histology, immunohistochemistry [against markers of vascular cells (von Willebrand factor [vWF], smooth muscle actin [SMA]), and macrophages ([ED1 and ED2] immunostaining)], and enzyme-linked immunosorbent assay (ELISA; for the expression of various cytokines and inducible NO synthase). PDO showed the best in vitro properties. Six weeks after implantation, MRI did not detect significant luminal changes in any group. All biopolymers were evenly lined by vWF-positive cells, but only PDO and PHBVV showed a continuous layer of SMA-positive cells at 3 months. PU patches resulted in a marked granulomatous inflammatory reaction. The ADSC and RGD biofunctionalization yielded similar outcomes. These data confirm the good biocompatibility of PDO and support the concept that appropriately peptide-functionalized polymers may be successfully substituted for cell-loaded materials

    Dynamics of human prothymocytes and xenogeneic thymopoiesis in hematopoietic stem cell-engrafted nonobese diabetic-SCID/IL-2ry null mice.

    No full text
    International audienc

    Pro-angiogenic effect of RANTES-loaded polysaccharide-based microparticles for a mouse ischemia therapy

    No full text
    International audiencePeripheral arterial disease results from the chronic obstruction of arteries leading to critical hindlimb ischemia. The aim was to develop a new therapeutic strategy of revascularization by using biodegradable and biocompatible polysaccharides-based microparticles (MP) to treat the mouse hindlimb ischemia. For this purpose, we deliver the pro-angiogenic chemokine Regulated upon Activation, Normal T-cell Expressed and Secreted (RANTES)/CCL5 in the mouse ischemic hindlimb, in solution or incorporated into polysaccharide-based microparticles. We demonstrate that RANTES-loaded microparticles improve the clinical score, induce the revascularization and the muscle regeneration in injured mice limb. To decipher the mechanisms underlying RANTES effects in vivo, we demonstrate that RANTES increases the spreading, the migration of human endothelial progenitor cells (EPC) and the formation of vascular network. The main receptors of RANTES i.e. CCR5, syndecan-4 and CD44 expressed at endothelial progenitor cell surface are involved in RANTES-induced in vitro biological effects on EPC. By using two RANTES mutants, [E66A]-RANTES with impaired ability to oligomerize, and [44 AANA 47]-RANTES mutated in the main RANTES-glycosaminoglycan binding site, we demonstrate that both chemokine oligomerization and binding site to glycosaminoglycans are essential for RANTES-induced angiogenesis in vitro. Herein we improved the muscle regeneration and revascularization after RANTES-loaded MP local injection in mice hindlimb ischemia
    corecore