49 research outputs found

    EINE SPEZIFISCHE SCHACHTFÖRDERUNGSAUFGABE

    Get PDF

    Metal-ligand interplay in strongly-correlated oxides: a parametrized phase diagram for pressure induced spin transitions

    Full text link
    We investigate the magnetic properties of archetypal transition-metal oxides MnO, FeO, CoO and NiO under very high pressure by x-ray emission spectroscopy at the K\beta line. We observe a strong modification of the magnetism in the megabar range in all the samples except NiO. The results are analyzed within a multiplet approach including charge-transfer effects. The pressure dependence of the emission line is well accounted for by changes of the ligand field acting on the d electrons and allows us to extract parameters like local d-hybridization strength, O-2p bandwidth and ionic crystal field across the magnetic transition. This approach allows a first-hand insight into the mechanism of the pressure induced spin transition.Comment: 5 pages, 3 figure

    Temperature and pressure-induced spin-state transitions in LaCoO3

    Full text link
    We report the continuous variation of the spin moment of cobalt in LaCoO3 across its temperature and pressure-induced spin transitions evidenced with K\beta emission spectra. The first thermal transition is best described by a transition to an orbitally nondegenerate intermediate spin (S=1) state. In parallel, continuous redistribution of the 3d electrons is also indicated by partial fluorescence yield X-ray absorption spectra. At high pressure, our study confirms that the material becomes low spin between 40 and 70 kbar at room temperature

    Evolution of Fe Species During the Synthesis of Over-Exchanged Fe/ZSM5 Obtained by Chemical Vapor Deposition of FeCl3

    Get PDF
    Abstract The evolution of iron in over-exchanged Fe/ZSM5 prepared via chemical vapor deposition of FeCl 3 was studied at each stage of the synthesis. Different characterization techniques (EXAFS, HR-XANES

    On Predicting Mössbauer Parameters of Iron-Containing Molecules with Density-Functional Theory

    Get PDF
    The performance of six frequently used density functional theory (DFT) methods (RPBE, OLYP, TPSS, B3LYP, B3LYP*, and TPSSh) in the prediction of Mössbauer isomer shifts(δ) and quadrupole splittings (ΔEQ) is studied for an extended and diverse set of Fe complexes. In addition to the influence of the applied density functional and the type of the basis set, the effect of the environment of the molecule, approximated with the conducting-like screening solvation model (COSMO) on the computed Mössbauer parameters, is also investigated. For the isomer shifts the COSMO-B3LYP method is found to provide accurate δ values for all 66 investigated complexes, with a mean absolute error (MAE) of 0.05 mm s–1 and a maximum deviation of 0.12 mm s–1. Obtaining accurate ΔEQ values presents a bigger challenge; however, with the selection of an appropriate DFT method, a reasonable agreement can be achieved between experiment and theory. Identifying the various chemical classes of compounds that need different treatment allowed us to construct a recipe for ΔEQ calculations; the application of this approach yields a MAE of 0.12 mm s–1 (7% error) and a maximum deviation of 0.55 mm s–1 (17% error). This accuracy should be sufficient for most chemical problems that concern Fe complexes. Furthermore, the reliability of the DFT approach is verified by extending the investigation to chemically relevant case studies which include geometric isomerism, phase transitions induced by variations of the electronic structure (e.g., spin crossover and inversion of the orbital ground state), and the description of electronically degenerate triplet and quintet states. Finally, the immense and often unexploited potential of utilizing the sign of the ΔEQ in characterizing distortions or in identifying the appropriate electronic state at the assignment of the spectral lines is also shown

    Theoretical investigation of the electronic structure of Fe(II) complexes at spin-state transitions

    Get PDF
    The electronic structure relevant to low spin (LS)high spin (HS) transitions in Fe(II) coordination compounds with a FeN6 core are studied. The selected [Fe(tz)6]2+(1) (tz=1H-tetrazole), [Fe(bipy)3]2+(2) (bipy=2,2’-bipyridine) and [Fe(terpy)2]2+ (3) (terpy=2,2’:6’,2’’-terpyridine) complexes have been actively studied experimentally, and with their respective mono-, bi-, and tridentate ligands, they constitute a comprehensive set for theoretical case studies. The methods in this work include density functional theory (DFT), time-dependent DFT (TD-DFT) and multiconfigurational second order perturbation theory (CASPT2). We determine the structural parameters as well as the energy splitting of the LS-HS states (ΔEHL) applying the above methods, and comparing their performance. We also determine the potential energy curves representing the ground and low-energy excited singlet, triplet, and quintet d6 states along the mode(s) that connect the LS and HS states. The results indicate that while DFT is well suited for the prediction of structural parameters, an accurate multiconfigurational approach is essential for the quantitative determination of ΔEHL. In addition, a good qualitative agreement is found between the TD-DFT and CASPT2 potential energy curves. Although the TD-DFT results might differ in some respect (in our case, we found a discrepancy at the triplet states), our results suggest that this approach, with due care, is very promising as an alternative for the very expensive CASPT2 method. Finally, the two dimensional (2D) potential energy surfaces above the plane spanned by the two relevant configuration coordinates in [Fe(terpy)2]2+ were computed both at the DFT and CASPT2 levels. These 2D surfaces indicate that the singlet-triplet and triplet-quintet states are separated along different coordinates, i.e. different vibration modes. Our results confirm that in contrast to the case of complexes with mono- and bidentate ligands, the singlet-quintet transitions in [Fe(terpy)2]2+ cannot be described using a single configuration coordinate
    corecore