28 research outputs found

    Characterization and Enhancement of Antenna System Performance in Compact MIMO Terminals

    Get PDF
    Co-band multiple-antenna implementation in compact user terminals is necessary for harvesting the full potential of diversity and multiple-input multiple-output (MIMO) technology in cellular communication systems. The recent worldwide deployment of Long Term Evolution (LTE), which requires the use of MIMO technology in the downlink, adds to the urgency of achieving both practical and optimal multiple-antenna systems in user terminals. Contrary to conventional understanding, an optimal multiple-antenna implementation does not only involve the design and placement of antenna elements in the terminals, but extends beyond the antenna elements and common antenna parameters to comprise interactions with the near field user and the propagation environment. Moreover, these interactions are non-static, which implies that the multiple-antenna system must adapt to the prevailing overall communication channel in order to assure the highest performance gains. This doctoral thesis aims to address several key issues in optimal multiple-antenna system design for compact multi-band MIMO terminals, with the first half (Papers I to III) focusing on the performance characterization of such terminals in the presence of user interaction and propagation channel, under the challenging constraint that the terminals are compact. The second half of the thesis (Papers IV to VI) considers two performance enhancement approaches suitable for compact MIMO terminals in realistic usage conditions. In particular, the potential benefits of harmonizing compact multiple-antenna systems with the propagation channel and user influence are determined with respect to reconfigurability in antenna patterns and impedance matching circuits. In Paper I, the diversity performance of internal multiple antennas with multi-band coverage in a mock-up with the size of a typical mobile handset is investigated in different user interaction scenarios. For comparison, a second mock-up with only one multi-band antenna is also evaluated in the same user cases. An ideal uniform propagation environment is assumed. The performance at frequency bands below and above 1 GHz are presented and analyzed in detail. Paper II extends the study in Paper I by evaluating the single-input multiple-output (SIMO) and MIMO capacity performance of the same antenna prototypes under the same user interaction scenarios and propagation environment. In Paper III, the impacts of gain imbalance and antenna separation on the throughput performance of a dual-dipole configuration are studied at frequencies below and above 1 GHz in a repeatable dynamic multi-path environment, using a live HSPA network. Since the compactness of a user terminal has implications on the antenna separation and gain imbalance of the multiple antennas, the focus is to gain knowledge on how these two factors affect the end user experience in practice. In Paper IV, three simple dual-antenna topologies implemented in compact smart phone prototypes of identical form factors are evaluated in MIMO channel measurements in noise-limited and interference-limited urban scenarios. Each dual-antenna topology is intentionally designed to provide a distinct set of antenna patterns. The goal is to investigate the potential of antenna system design as one of the key performance differentiators in real terminal implementations. Paper V extends the work in Paper IV by introducing user interaction to the same MIMO channel measurement setup. Furthermore, the focus of this paper is on the evaluation of both the average and local channel performances and their potential enhancements. Finally, Paper VI ascertains the potential capacity gains of applying uncoupled adaptive matching to a compact dual-antenna terminal in an indoor office environment, under a realistic user scenario. The performance gains are evaluated by means of extensive MIMO channel measurements at frequency bands below and above 1 GHz

    Experimental evaluation of MIMO terminal antenna configurations in noise- and interference-limited urban scenarios

    Get PDF
    In this paper, we compare capacity performances of three terminal dual-antenna configurations at 2.65 GHz based on extensive 2 by 2 multiple-input multiple-output (MIMO) channel measurements in an urban macrocellular environment. Both noise- and interference-limited scenarios are investigated. Our results show that, on average over the measurement route, the capacity performance is mainly determined by the received power. However, locally along the route, the eigenvalue dispersion of the channel can be the dominant factor that influences the capacity performance. In addition, significant differences in the local performances of the terminal antenna configurations along the route give an indication that antenna reconfigurability is a promising approach to maximize capacity

    Impact of antenna design on MIMO performance for compact terminals with adaptive impedance matching

    Get PDF
    Using the metrics of channel capacity and multiplexing efficiency, the adaptive impedance matching (AIM) performances of two multiple-input multiple-output (MIMO) terminals with different antenna designs were evaluated and compared. The evaluation was performed in LTE Band 18 Downlink (860-875 MHz) under realistic usage conditions of two measured user handgrips and simulated propagation channels with different angular spreads (ASs). The results provide potential performance gains from AIM based on realistic MIMO terminal prototypes, and the underlying mechanisms by which the gains were achieved, which can serve as antenna and AIM circuit design guidelines. In particular, the evaluation revealed that ideal uncoupled AIM networks can increase the capacity by up to 52% relative to 50 ohm terminations. However, the observed gains depend heavily on the antenna design, the user scenario and the channel’s angular spread. For example, the wideband design in different user cases experienced capacity gain of 4-9% from AIM in uniform 3D channels, in contrast to the 1.3-44% gain seen in a conventional narrowband design. In non-uniform channels with small ASs, the AIM gain for different mean incident angles depends on the absolute mean effective gain (MEG) and the change in correlation due to AIM; In cases where AIM has little impact on correlation, the mean incident angles with high AIM gains were close to those with high MEGs

    Performance of a multiband diversity antenna with hand effects

    Get PDF
    The implementation of multiband diversity antennas in compact mobile handsets, for the purpose of increasing transmission quality, is a topic of current interest in the mobile phone industry. In order to achieve the expected performance improvement in typical operating conditions, we not only have to contend with the challenges of designing multiple multiband antennas, which are closely spaced within the compact handset and thus strongly interacting with one another electromagnetically [1], we also need to keep in check the electromagnetic interaction between the whole antenna system (i.e., the handset) and the user. Previous studies have concluded that the presence of a user degrades the mean effective gain (MEG) of the diversity antennas significantly [1]-[3]. Different results have been presented on the effect of the user on the correlation coefficient, no effect [1] and a significant increase of the correlation [2], [3], have been pointed out. However, these studies have been performed on simple single band antennas in talk position. In this paper a more realistic approach is presented by choosing the diversity antenna system to comprise compact versions of PIFA and monopole antennas which cover three WCDMA bands: WCDMA850, WCDMA1800 and UMTS [4]. Such compact antennas are easily conformable for small mobile phone products [4]. The choice of the bands, as well as the evaluation of the diversity performance for the data mode position, is derived from the increasing demand on HSDPA applications in the mobile phone market. The investigation of user interaction presented in this paper focuses on the comparison between the free space and data mode diversity performance of a tri-band “stick” phone size prototype in the uniform 3D propagation environment. A state-of-the-art phantom hand from IndexSAR [5] is used to hold the diversity prototype in the data mode position

    Impact of Antenna Design on MIMO Performance for Compact Terminals With Adaptive Impedance Matching

    Full text link

    Capacity maximisation of a handheld MIMO terminal with adaptive matching in an indoor environment

    Get PDF
    This letter reports the capacity performance of a handheld dual-band dual-antenna compact MIMO terminal, which utilizes uncoupled adaptive impedance matching for capacity maximisation. The capacity is evaluated at 0.825 GHz and 2.35 GHz in an indoor office environment. The results show that adaptive matching enhances capacity by up to 44% and 22% at the low and high frequency bands, respectively, relative to no matching. At the low band, the capacity gain is attributed to both increased received power and decreased channel eigenvalue dispersion, whereas at the high band, the capacity gain is only due to increased power

    Experimental investigation of adaptive impedance matching for a MIMO terminal with CMOS SOI tuners

    Get PDF
    It is well known that user proximity introduces absorption and impedance mismatch losses that severely degrade multiple-input multiple-output (MIMO) performance of handset antennas. In this work, we experimentally verified the potential of adaptive impedance matching (AIM) to mitigate user interaction effects and identified the main AIM gain mechanism in realistic systems. A practical setup including custom-designed CMOS silicon-on-insulator (SOI) impedance tuners implemented on a MIMO handset was measured in three propagation environments and 10 real user scenarios. The results indicate that AIM can improve MIMO capacity by up to 42% equivalent to 3.5 dB of multiplexing efficiency (ME) gain. Taking into account the measured losses of 1 dB in the integrated tuners, the maximum net ME gain is 2.5 dB suggesting applicability in practical systems. Variations in ME gains of up to 1.5 dB for different hand-grip styles were mainly due to differences in impedance mismatch and tuner loss distribution. The study also confirmed earlier results on the significant differences in mismatch and absorption between phantoms and real users, in which the phantoms underestimated user effects and therefore AIM gains. Finally, propagation environments of different angular spreads were found to give only minor ME gain variations
    corecore