109 research outputs found

    Has the DRG System Influenced the Efficiency of Diagnostic Technology in Portugal?

    Get PDF
    The use of Diagnostic Related Groups (DRG) as a mechanism for hospital financing is a currently debated topic in Portugal. The DRG system was scheduled to be initiated by the Health Ministry of Portugal on January 1, 1990 as an instrument for the allocation of public hospital budgets funded by the National Health Service (NHS), and as a method of payment for other third party payers (ex. Public Employees (ADSE), private insurers, etc.). Based on experience from other countries such as the United States, it was expected that implementation of this system would result in more efficient hospital resource utilisation and a more equitable distribution of hospital budgets. However, in order to minimise the potentially adverse financial impact on hospitals, the Portuguese Health Ministry decided to gradually phase in the use of the DRG system for budget allocation by using blended hospital-specific and national DRG case-mix rates. Since implementation in 1990, the percentage of each hospital's budget based on hospital specific costs was to decrease, while the percentage based on DRG case-mix was to increase. This was scheduled to continue until 1995 when the plan called for allocating yearly budgets on a 50% national and 50% hospital-specific cost basis. While all other non- NHS third party payers are currently paying based on DRGs, the adoption of DRG case-mix as a National Health Service budget setting tool has been slower than anticipated. There is now some argument in both the political and academic communities as to the appropriateness of DRGs as a budget setting criterion as well as to their impact on hospital efficiency in Portugal. This paper uses a two-stage procedure to assess the impact of actual DRG payment on the productivity (through its components, i.e. technological change and technical efficiency change) of diagnostic technology in Portuguese hospitals during the years 1992-1994, using both parametric and non-parametric frontier models. We find evidence that the DRG payment system does appear to have had a positive impact on productivity and technical efficiency of some commonly employed diagnostic technologies in Portugal during this time span.

    On understanding character-level models for representing morphology

    Get PDF
    Morphology is the study of how words are composed of smaller units of meaning (morphemes). It allows humans to create, memorize, and understand words in their language. To process and understand human languages, we expect our computational models to also learn morphology. Recent advances in neural network models provide us with models that compose word representations from smaller units like word segments, character n-grams, or characters. These so-called subword unit models do not explicitly model morphology yet they achieve impressive performance across many multilingual NLP tasks, especially on languages with complex morphological processes. This thesis aims to shed light on the following questions: (1) What do subword unit models learn about morphology? (2) Do we still need prior knowledge about morphology? (3) How do subword unit models interact with morphological typology? First, we systematically compare various subword unit models and study their performance across language typologies. We show that models based on characters are particularly effective because they learn orthographic regularities which are consistent with morphology. To understand which aspects of morphology are not captured by these models, we compare them with an oracle with access to explicit morphological analysis. We show that in the case of dependency parsing, character-level models are still poor in representing words with ambiguous analyses. We then demonstrate how explicit modeling of morphology is helpful in such cases. Finally, we study how character-level models perform in low resource, cross-lingual NLP scenarios, whether they can facilitate cross-linguistic transfer of morphology across related languages. While we show that cross-lingual character-level models can improve low-resource NLP performance, our analysis suggests that it is mostly because of the structural similarities between languages and we do not yet find any strong evidence of crosslinguistic transfer of morphology. This thesis presents a careful, in-depth study and analyses of character-level models and their relation to morphology, providing insights and future research directions on building morphologically-aware computational NLP models

    From characters to words to in between: Do we capture morphology?

    Get PDF
    Words can be represented by composing the representations of subword units such as word segments, characters, and/or character n-grams. While such representations are effective and may capture the morphological regularities of words, they have not been systematically compared, and it is not understood how they interact with different morphological typologies. On a language modeling task, we present experiments that systematically vary (1) the basic unit of representation, (2) the composition of these representations, and (3) the morphological typology of the language modeled. Our results extend previous findings that character representations are effective across typologies, and we find that a previously unstudied combination of character trigram representations composed with bi-LSTMs outperforms most others. But we also find room for improvement: none of the character-level models match the predictive accuracy of a model with access to true morphological analyses, even when learned from an order of magnitude more data.Comment: Accepted at ACL 201

    Automatically Building a Corpus for Sentiment Analysis on Indonesian Tweets

    Get PDF

    IndoNLI : a Natural Language Inference Dataset for Indonesian

    Get PDF
    We present IndoNLI, the first human-elicited NLI dataset for Indonesian. We adapt the data collection protocol for MNLI and collect ~18K sentence pairs annotated by crowd workers and experts. The expert-annotated data is used exclusively as a test set. It is designed to provide a challenging test-bed for Indonesian NLI by explicitly incorporating various linguistic phenomena such as numerical reasoning, structural changes, idioms, or temporal and spatial reasoning. Experiment results show that XLM-R outperforms other pre-trained models in our data. The best performance on the expert-annotated data is still far below human performance (13.4% accuracy gap), suggesting that this test set is especially challenging. Furthermore, our analysis shows that our expert-annotated data is more diverse and contains fewer annotation artifacts than the crowd-annotated data. We hope this dataset can help accelerate progress in Indonesian NLP research

    UParse: the Edinburgh system for the CoNLL 2017 UD shared task

    Get PDF

    What do character-level models learn about morphology? The case of dependency parsing

    Get PDF
    When parsing morphologically-rich languages with neural models, it is beneficial to model input at the character level, and it has been claimed that this is because character-level models learn morphology. We test these claims by comparing character-level models to an oracle with access to explicit morphological analysis on twelve languages with varying morphological typologies. Our results highlight many strengths of character-level models, but also show that they are poor at disambiguating some words, particularly in the face of case syncretism. We then demonstrate that explicitly modeling morphological case improves our best model, showing that character-level models can benefit from targeted forms of explicit morphological modeling.Comment: EMNLP 201
    • 

    corecore