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Abstract

Morphology is the study of how words are composed of smaller units of meaning
(morphemes). It allows humans to create, memorize, and understand words in their
language. To process and understand human languages, we expect our computational
models to also learn morphology. Recent advances in neural network models provide
us with models that compose word representations from smaller units like word seg-
ments, character n-grams, or characters. These so-called subword unit models do not
explicitly model morphology yet they achieve impressive performance across many
multilingual NLP tasks, especially on languages with complex morphological pro-
cesses. This thesis aims to shed light on the following questions: (1) What do subword
unit models learn about morphology? (2) Do we still need prior knowledge about
morphology? (3) How do subword unit models interact with morphological typology?
First, we systematically compare various subword unit models and study their per-
formance across language typologies. We show that models based on characters are
particularly effective because they learn orthographic regularities which are consistent
with morphology. To understand which aspects of morphology are not captured by
these models, we compare them with an oracle with access to explicit morphologi-
cal analysis. We show that in the case of dependency parsing, character-level models
are still poor in representing words with ambiguous analyses. We then demonstrate
how explicit modeling of morphology is helpful in such cases. Finally, we study how
character-level models perform in low resource, cross-lingual NLP scenarios, whether
they can facilitate cross-linguistic transfer of morphology across related languages.
While we show that cross-lingual character-level models can improve low-resource
NLP performance, our analysis suggests that it is mostly because of the structural
similarities between languages and we do not yet find any strong evidence of cross-
linguistic transfer of morphology. This thesis presents a careful, in-depth study and
analyses of character-level models and their relation to morphology, providing insights
and future research directions on building morphologically-aware computational NLP

models.



Lay Summary

The advancement of technology has made a tremendous impact in our daily lives.
Every day people interact with technology to fulfil their information needs, and we
expect that one day we can naturally communicate with computer as we communicate
with humans. To do so, we first need to build a system that can understand human
languages. But human languages are remarkably complex and diverse, which make
processing and understanding languages challenging. For example, the same informa-
tion can be expressed using one word in Turkish but several words, or even one whole
sentence in English. In this thesis, we focus on one particular aspect of language called
morphology, which is the study of how words are composed of smaller units of mean-
ing. We study how words are represented in the current natural language processing
systems. We show that models that represent word from characters are effective for
many languages, but we also demonstrate that prior knowledge of morphology can

further improve the performance of these models.
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Chapter 1

Introduction

Technology has become an integral part of our daily lives. Every day, people commu-
nicate with technology to fulfill their information needs. This includes typing some
keywords into a search engine, making a reservation, or playing online music. As
technology becomes more advanced, people also aim for a more seamless and natural
communication using human languages. The ultimate goal of natural language pro-
cessing (NLP) is to understand human languages—either written or spoken—to allow

communication between humans and computer.

But human languages are remarkably complex and diverse. Consider the following

English sentence:

Mary baked a chocolate cake for her mom’s birthday.

Though relatively short, this sentence has a complex meaning. It has the basic who-
did-what-to-whom information, that is, ‘Mary baked a cake’, as well as more detailed
information: the cake is a chocolate cake and Mary baked it to celebrate her mom’s
birthday.

To understand the meaning of a sentence, we must first understand the meaning of
its individual words. However, words themselves are also composed of even smaller
meaningful units called morphemes. For instance, the word ‘baked’ is actually com-
posed of two morphemes, ‘bake’ and ‘-ed’, where the latter represents an action hap-
pened in the past. It is different from present action, which is indicated by morpheme ‘-
s’, as seen in ‘bakes’. These examples of ‘baked’ and ‘bakes’ show the compositional
structure of words: the meaning of a word is a function of the meaning of its mor-

phemes.
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One important distinction in morphology is that of form and function (Tsarfaty and
Sima’an, 2008). Form concerns with the phonetic realization—the actual form in
speech or writing—of a morpheme, while function concerns with the meaning that
a morpheme bears. For instance, English plural morpheme can be realized with an °-s’

3

suffix as in ‘cats’ or an ‘-es’ suffix as in ‘churches’. Sometimes a form can also be
ambiguous; the ‘-s’ suffix can both express plural meaning on nouns or third person
singular on verbs (‘gives’ or ‘takes’). This many-to-many relation between form and

function makes modeling morphology challenging for NLP.

Modeling morphemes is important for many NLP tasks because languages are pro-
ductive. People are continuously inventing new words and applying morphemes to
them. When °‘selfie’ was invented, people naturally use ‘selfies’ as its plural form.
Similarly, people come up with ‘binge-watch’ and can easily understand its morpho-
logically variants ‘binge-watching’ or ‘binge-watched’. Like humans, we expect NLP
systems to understand the morphological (word formation) processes in the language.
When a user types ‘cat’ in a search engine, he or she would expect to get all docu-
ments containing both ‘cat’ and ‘cats’. When translating ‘cats’ to another language,
we expect our translation system to understand that it is a plural from and generate
the correct translation in the target language. If the target language is Indonesian, this
means generating ‘kucing-kucing’ (more than one cat) instead of ‘kucing’ (one cat).
In this example, Indonesian applies reduplication for plural forms; other languages

might use other morphological processes to form words.

Morphology in NLP. Until quite recently, statistical models of NLP generally mod-
eled individual word forms as atomic units. Ignoring the fact that words are composed
of morphemes introduces limitations to these models. First, they make a closed vocab-
ulary assumption, enabling only generic out-of-vocabulary (OOV) handling. Second,
they cannot exploit systematic functional relationships in learning. For example, ‘cat’
and ‘cats’ stand in the same morphological relationship as ‘dog” and ‘dogs’. While this
relationship might be discovered for these specific frequent words, there is no guaran-

tee that they can learn the same effect on the much rarer words ‘sloth’ and ‘sloths’.

Traditional models address these problems by incorporating relevant morphological
analyses (present/past tense, singular/plural, etc) as features (Koehn and Hoang, 2007,
Avramidis and Koehn, 2008; Tsarfaty et al., 2010). However, morphological analy-

ses require expensive morphological annotations and even automatic analyzers require
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annotated data for training.

While a single morpheme can have multiple realizations, they are usually similar in
forms. Thus, the general relationship between form and function can be exploited by
identifying similar subword units (characters, character n-grams, or word segments)
across words. Indeed, models based on subword units are now used in many NLP sys-
tems as neural networks became prevalent a few years ago. These so-called subword
unit models represent words by composing representations of subwords. Thus, instead
of learning representations for each possible words, they learn representations of each
possible subwords. Since the number of possible subwords is a lot smaller than the
number of possible words, subword unit models usually have fewer number of param-
eters compared to the word-level model. They also can represent rare and OOV words,

and they do not require expensive morphological analyzers.

This thesis investigates whether subword unit models, particulary character-level mod-
els, learn morphology. Empirically, character-level models (Ling et al., 2015a; Kim

et al., 2016) have been quite successful, and this has given rise to some untested claims:

* Ling et al. (2015a) claim that character-level models can “model the complex
form-function relationship, which captures non-compositional effects, where
small orthographic differences may correspond to large semantic or syntactic
differences (butter vs. batter) ... in addition to the more regular effects due to,

e.g., morphological processes."

* Lee et al. (2017) claim that character-level models “can easily be applied to a
multilingual translation setting. Between European languages where the major-
ity of language alphabets overlaps, a character-level model may easily identify

morphemes that are shared across different languages."

These claims strongly imply that character-level models learn morphology, and they
have raised a question and debate about explicit modeling of morphology in NLP. Ling
et al. (2015b) propose that “prior information regarding morphology ... among others,
should be incorporated” into character-level models, while Chung et al. (2016) counter
that it is “unnecessary to consider these prior information”” when modeling characters.
Whether we need to explicitly model morphology is a question whose answer has a
real cost: as Ballesteros et al. (2015) note, morphological annotation is expensive, and
this expense could be reinvested elsewhere if the predictive aspects of morphology are

learnable from strings.
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Morphology varies across languages. Character-level models are fairly new and
early studies (Ling et al., 2015a; Kim et al., 2016) tested them on just a few languages,
mainly English and some Indo-European languages. As alluded to earlier, languages
vary with respect their morphological processes. In the morphological typology spec-
trum, English is closer to the analytic side since it uses relatively fewer morphemes
per word. Some grammatical functions (tenses or number) are expressed using mor-
phemes, but there are many other functions which are conveyed by function words
(‘the’ or ‘in’) or word order (subject-verb-object). Other synthetic languages which
have many morphemes per word are situated towards the other side of the spectrum.
Since these languages express grammatical functions mostly through morphemes, they
tend to have flexible word order. For example, in Czech, §kola and Skolu are used to
express the word ‘school’ as a subject and an object, respectively. Another example of
synthetic languages is Turkish, which is well-known to have many (five or more) mor-
phemes ‘glued’ together in a single word, resulting in a quite long word form (Kornfilt,
1997):

(1) oku +r  +sa +m
read +AOR +COND +1SG
‘If I read ...

(2) okit +ya +ma +yabil +ir +im
read +POT +NEG +POT +AOR +1SG

‘I might not be able to read’

As stated by Bender (2013), languages are typologically diverse, and the behavior of a
model on one language may not generalize to others. How do character-level models
interact with languages of different morphological typologies? This thesis shows that
character-level models are effective across typologically diverse languages, but

prior knowledge of morphology is still important for neural models.

1.1 Thesis Outline

This thesis investigates how subword unit representation models learn morphology,
how they interact with typologically diverse languages, and how they perform under

low-resource NLP settings. This thesis is organized as follows:
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Chapter 2 This chapter reviews background materials of this thesis. We present some
key concepts of morphology and how they relate to syntax. We also discuss the mor-
phological typology, one of the crucial components of this thesis to give perspective on
how languages vary with respect to their morphological processes. After that, we give
a brief overview on how words (and morphology) are represented in NLP models. In
the last part of the chapter, we review two recent subword unit representation models

which are now used in many NLP models.

Chapter 3 To provide a solid baseline, we systematically compare subword units
based representation models, investigating (1) the choice of subword unit, (2) model
architecture, and (3) their interaction with language typology. We experiment on lan-
guage modeling—the task of predicting the next word, given the identities of previous
words—which plays a central role in many NLP systems. We show that character-level
models are the most effective across ten typologically diverse languages. Character-
level models learn orthographic similarity of words—including the ones which are
consistent to morphology—so they can better represent rare and OOV words. To in-
vestigate our main question, we also provide oracle experiments, in which we compare
the predictive accuracy of the character-level models to oracle with access to human
annotated morphological information. We show that character-level models are effec-
tive across typologies, but their performance still underperform the oracle, even with
an order of magnitude more data. This work has been published in Vania and Lopez
(2017).

Chapter 4 Our oracle experiments in Chapter 3 suggest that character-level models
do not entirely capture morphology. Which aspects of morphology are not captured by
these models? We further investigate this question by directly comparing the perfor-
mance of character-level models with the oracle on dependency parsing task. Depen-
dency parsing aims to extract relationship between words in a sentence (such as subject
or object), which in some languages, interacts with morphology. We employ parsing
models with character-level input and experiment on twelve typologically diverse lan-
guages. First, we test explicitly why character-level models are better than standard
word-level models. We then demonstrate how our parsing models can benefit from

explicit morphological modeling for case syncretism, a linguistic phenomena where
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different morphological cases are expressed using the same word form!. This study
suggests that our neural models probably do not need all prior linguistic knowledge,
but they clearly benefit from some knowledge in addition to raw text input. This work
is published in Vania et al. (2018) and Vania and Lopez (2018).

Chapter 5 Annotated data are available for only a tiny fraction of the world’s lan-
guages. So far, our character-level models are trained using a relatively fair amount
of data and it is not understood how they perform on resource-poor conditions. In
this chapter, we examine a set of simple strategies to improve low-resource depen-
dency parsing which exploit small linguistic annotations and raw text information: (1)
data augmentation, (2) cross-lingual training, and (3) transliteration. This also allows
us to test the claim whether character-level models can identify morphemes that are
shared across different languages (Lee et al., 2017). We apply parsing models which
take character-level input and experiment on three truly low-resource languages: North
Sami, Galician, and Kazakh. We show how our strategies, particularly cross-lingual
training helps low-resource parsing. However, our analysis suggests that cross-lingual
training helps mostly because of the structural similarities between languages and we
do not yet find any strong evidence of morphological transfer in the cross-lingual train-

ing.

Chapter 6 The summary of our main findings and pointers for future research direc-

tions.

'We discuss morphological case more detail in Chapter 2.



Chapter 2

Background

This chapter introduces background material which sets the fundamental building block
of this thesis. We begin by reviewing some key aspects of morphology, its relation to
syntax, and to morphological typology (Section 2.1). We then discuss the language
modeling (Section 2.2) and how it can be used for learning word representations (Sec-
tion 2.3). Finally, we discuss word representation models based on subword units, and
how they might help downstream task which benefits from morphological information

such as dependency parsing (Section 2.4).

2.1 Morphology

Morphology is the subfield of linguistics which studies the internal structure of words
and how they are formed. In Chapter 1, we have used the notion of ‘word’ in a quite
general way, but it is important to note that the ‘word’ which can be realized into
various word forms is actually called a lexeme. A lexeme is an abstract sense of word
and we can think of it as a lexical entry in a dictionary. A lemma is the canonical
form that is used to represent the lexeme. For example, the English dictionary locates
‘write’, ‘writes’, ‘written’, and ‘writing’ all within the same lexeme, with WRITE as
the lemma. A concrete word observed in a piece of text is known as a word token. A
word type is each distinct word form in a piece of text. For example, ‘the cats and the
butterflies’ has five word tokens and four word types (‘the’, ‘cats’, ‘and’, ‘butterflies’).
A morphological paradigm defines a complete set of word forms that belongs to the

same lexeme. Table 2.1 shows the paradigm of the Latin noun lexeme INSULA.
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SINGULAR PLURAL

NOMINATIVE insula insulae
ACCUSATIVE insulam insuldas
GENITIVE insulae insularum
DATIVE insulae insulis
ABBLATIVE  insula insulis

Table 2.1: The paradigm of the Latin noun lexeme INSULA (island). (Haspelmath, 2010)

A fundamental part of morphology is the correspondence between form (structure)
and function (meaning). A morpheme is the smallest meaningful unit in the grammar
of a language; it carries a specific function that contributes to meaning. A morph is
the phonetic realization—the actual form in speech or writing—of a morpheme, which
may vary from word to word. For instance, the English plural morpheme -s can be
realized with an *-s’ as in ‘dogs’ or an ‘-es’ as in ‘branches’.! These different realiza-
tions of a single morpheme is called allomorphs. A null morpheme is a morpheme
that has no phonetic form. An example is the present tense of English for non third
person singular (‘/ sing” vs. ‘They sing’). The mapping from form to function is
not always straightforward and often requires contextual information for interpretation
(Beard, 1988; Anderson, 1992; Tsarfaty and Sima’an, 2008).

Word forms belong to the same paradigm typically share at least one core morpheme
with a concrete meaning and additional shorter morphemes called affixes. A base is
the core morpheme(s) that an affix is attached to. A root is a base which cannot be
broken up any further into component morphemes. For example, in ‘sustainability’,
sustainable is the base and sustain is the root. As such, the notion of base is deter-
mined by the notion of affix (Haspelmath, 2010). An affix expresses one or more
dependent features of the core meaning, such as person, gender, or tense. For exam-
ple, ‘tries’ consists of a base try and a dependent morpheme -s representing a set of
third person, singular, present tense features. A morphological analysis identifies the
lemma, the part of speech (POS), and the set of features of a word. These distinctions

are summarized in Table 2.2.

Affixes can further be divided into several types according to their position within the

'Note that morpheme does not have actual realization. For clarity, this thesis uses italic to denote

morpheme (-s) and quotes to denote morph (‘-es’).
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word tries
morphemes try + -s
lemma try
affix -s
morphs ‘tri” + ‘-es’

morphological analysis try+VB+3RD.SG.PRES

Table 2.2: The morphemes, morphs, and morphological analysis of tries.

Example
Type
Affix Lemma Word form
prefix peN- ajar (teach)  pengajar (teacher)
infix -el- tunjuk (point) telunjuk (index finger)
suffix -an makan (eat) makanan (food)

circumfix peN-...-an buka (open)  pembukaan (opening)

Table 2.3: Example of different affix types in Indonesian.

word. Affixes that follow the base are called suffixes and affixes that precede it are
called prefixes. When an affix consists of both suffix and prefix, it is called circumfix.
Some languages also have infixes, which are affixes that are inserted inside the base.
The attachment of affixes might change the base form, depending on the phonemes of
the base and the affixes. For example, the Indonesian prefix peN- becomes peng- when
the base form starts with a vowel and becomes pem- when the base form starts with a

/bl. A full example of different affix types is given in Table 2.3.

2.1.1 Inflection and Derivation

Tables 2.2 and 2.3 show how morphemes can add different kinds of meanings to the
core meaning represented in the base form. According to the principal of word build-
ing processes, morphemes can be divided into two categories, namely inflectional and
derivational morphemes. Inflection modifies the base so that it can fit into a particular
syntactic slot in a sentence; it does not change the word-class of the base. In con-

trast, derivation may alter the meaning of the the base and create a new lexeme from
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a base (Katamba and Stonham, 2006). Table 2.4 gives examples of inflectional and

derivational processes in English.

Process Base Word-class | New form Word-class Function/Meaning
Inflection cat NOUN cats NOUN marks plural number
read VERB reads VERB marks present tense,

singular person

Derivation | kind ADJ unkind ADJ ‘not’ kind

write VERB writer NOUN an agent who writes

Table 2.4: Inflections and derivations in English.

This thesis mostly deals with inflectional morphology. To provide some background on
inflectional morphology this section discusses some properties of inflection. First, we
provide definitions of some inflectional features which are quite common in languages
with rich morphology. After that, we discuss the relevance of inflectional morphology

to the syntax.

2.1.1.1 Inflectional features

The degree of inflection varies across languages. An English verb can have around
six inflected forms, while a Polish verb may have up to 100 inflected forms (Janecki,
2000). The number of forms that a lexeme can have depends on the number of possi-
ble inflectional features and values in the language. Table 2.5 shows morphological

features and values that are common across languages.

Number feature expresses quantity. It typically takes two values (singular or plural)
but a few languages also use dual value for number. For example, in Slovenian, volk
(‘wolf”) has forms volk (‘one wolf”), volka (‘two wolves’), and volkovi (‘more than two

wolves’). This feature is usually marked on nouns, verbs, and sometimes adjectives.

Case is a system to indicate the semantic and syntactic role of a word in a sentence.
Typically, case marks the relationship of a noun to a verb, preposition, postposition, or
another noun at a clause or phrase level (Iggesen, 2013). Examples of case values are:
nominative for subjects, accusative for direct objects, dative for indirect objects, and
genitive for possession or relationships with another noun. In languages with extensive

case systems, case is also used to mark other roles such as location (locative) or tool
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Feature  Value On word category

Number SINGULAR, PLURAL, ... NOUN, PRON, VERB, ADJ, ADP
Case NOMINATIVE, ACCUSATIVE, ... NOUN, PRON, ADJ, ADP
Gender MASCULINE, FEMININE, ... NOUN, PRON, ADJ, ADP
Person  1ST, 2ND, 3RD, ... NOUN, PRON, VERB, ADJ, ADP
Tense PAST, PRESENT, FUTURE, ... VERB

Aspect  IMPERFECT, PERFECT, ... VERB

Mood INDICATIVE, IMPERATIVE, ... VERB

Table 2.5: Common inflectional features and values across languages (Haspelmath,
2010).

(instrument). This feature is mostly prominent in the Indo-European languages, in par-
ticular the Slavic languages. The following are examples of case marking in Russian
(3a) and Turkish (3b) for the sentence ‘Mark broke the window with a hammer.” (Sahin
etal., 2019):

(3) a. Mark-0 razbi-1-0 okn-o molotk-om
Mark-NOM.SG break-PST-SG.M window-ACC.SG hammer-INST.SG

‘Mark broke the window with a hammer.’

b. Mark-0 pencere-yi cekic-le kr-d
Mark-NOM.SG window-ACC.SG hammer-INST.SG break-PAST.3.SG

‘Mark broke the window with a hammer.’

In those examples, both Russian and Turkish use accusative case (ACC) and instru-
ment case (INST) markers for the object ‘window’ and the instrument tools ‘hammer’,

respectively. Case is mostly marked on nouns, pronouns, and adjectives.

Gender is a specific feature of nouns which usually form agreement with other cat-
egories such as adjectives, pronouns, articles, or verbs. For example, in Spanish, the
form of the article depends on the noun that it modifies. Spanish distinguishes mas-
culine and feminine genders. For example, in singular nouns, it uses articles el (mas-
culine) and la (feminine): el gato and la gata (‘the cat’). A few other languages like
Icelandic and German use three genders, and some languages like Bantu might have

up to 7-10 genders (Corbett, 2013). The combination of gender, case, and number is
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MASCULINE FEMININE
SINGULAR PLURAL SINGULAR PLURAL
NOMINATIVE der Tisch die Tische die Kraft die Kridfte
ACCUSATIVE den Tisch die Tische die Kraft die Kridfte
DATIVE dem Tisch(e) den Tishcen der Kraft  den Krdften
GENITIVE des Tisch(e)s der Tische der Kraft  der Kriifte

Table 2.6: Examples of German noun inflection (declension) for der Tisch (the table)
and die Kraft (the power).

typically used to generate the correct inflection, as seen in Table 2.6.>

Next, we discuss features which are common on verbs. Person indicates the subject of
a verb, whether it is the speaker (/st), the addressee (2nd), or a third party (3rd). Tense
marks the temporal information of verbs, whether it is in the past, present, or future.
In English, person and tense are usually combined with number to inflect verbs. For
example, the -s morpheme on verb is used to represent 3rd person, singular, present

tense features.

Aspect refers to the internal temporal constituency of an event, whether the action is
completed or will be completed (perfective); non-completed (imperfective); or repeti-
tive (habitual). For example, Polish verb pije (‘to drink’) for a third person singular can
be realized into the imperfective form pije (‘is drinking’) or the perfective form wyp-
ije (‘will drink’). Mood marks the speaker’s point of view. Typical values for mood
are indicative (objective facts), imperative (commands), and subjunctive (non-realized
events). Some languages, including English and many Indo-European languages con-
flate tense, mood, and aspect in a single morpheme. For example, the morpheme °-s’
in ‘sings’ expresses both present tense and indicative mood. English uses actual verb
form for imperative mood: ‘Sing!” or ‘Go!’. On the other hand, Italian marks imper-
ative mood through morphemes: for verbs that end with -are, like cantare (‘to sing’)

some of the possible forms are lei canti! (singular) or loro cantino! (plural).

Zhttps://en.wikipedia.org/wiki/German_grammar#Case (last access: January 2019)
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2.1.1.2 Syntactic agreement and government

How does inflectional morphology relate to syntax? In Chapters 4 and 5, we will exam-
ine the performance of subword units representation models on dependency parsing—a
syntactic task which benefits substantially from morphological knowledge. To provide
some background, here we discuss two syntactic relations which interact with mor-

phology, namely syntactic agreement and syntactic government.

Syntactic agreement This relation deals with how inflectional value of a given word
or phrase must be the same or agree with another word or phrase in a sentence. The
first is called as the farget while the latter is called as the controller. One example is
the English subject-verb agreement, where a verb (the target) must agree with its sub-
ject (the controller) in number value. In languages with richer morphology, syntactic
agreement may involve multiple features and/or multiple controllers. An example is in
Yimas, an endangered language in Papua New Guinea, where a verb should agree with

subject and object in person, gender, and number values (Foley, 1991):

(4) Krayn narman k-n-tay.
frog.SG(G6) woman.SG(G2) 3SG.G6.P-3SG.G2.AG-SEE

‘The woman saw the frog.’

In this example, the verb tay (‘see’) is inflected so that it agrees with both the subject
and the object in number. If we relate back to Table 2.5, the common inflectional
features of nouns and pronouns are the same as adjectives and adpositions. This is
because the controller of agreement relations are usually nouns, pronouns, or noun
phrases while the targets are usually adjectives, adpositions, or determiners. Verbs are
also frequent targets for noun agreement, especially in person, number, and sometimes
gender (Haspelmath, 2010).

Syntactic government Unlike syntactic agreement in which the controller and the
target should have the same inflectional value, in syntactic government, the target
might have a different inflectional feature/value with the controller. Syntactic gov-
ernment introduces a non-symmetrical (dependency) relation between two words wy
and wy, which can be written as w; — wj. Here, w; is said to be the governor or

head of w,, while wj is the dependent or child of wi. In languages with case marking,
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syntactic government typically involves governing a word to have a particular gram-
matical case feature, also called as case government. In this relation, usually a verb or
a preposition will govern the grammatical case on its noun dependents. For example,
the presence of negation on a Polish verb may lead to the different cases on it’s di-
rect object; a negated Polish verb requires a genitive case while a typical, non-negated
Polish verb requires an accussative case, as seen in the examples below (Patejuk and
Przepiorkowski, 2014):

(5) a. Poczytam ksik.
read.1st.SG book.ACC
‘T’ll read a book’

b. Nie poczytaj  ksiki czy gazety.
NEG read.3rd.PL book.GEN or newspaper.GEN

‘They won’t read a book or a newspaper.’

2.1.2 Morphological Typology

Languages vary considerably in their morphological complexity. Morphological typol-
ogy classifies languages based on the processes by which morphemes are composed
to form words. Linguists consider the following categories of languages according to

their dominant morphological processes (Katamba and Stonham, 2006):

Analytic or isolating languages are languages with very little degree of inflection.
To convey meaning, these languages depend on a strict word order or function words,
such as prepositions, postpositions, articles, etc. Analytic languages are mostly found
in East Asia, South East Asia, West Africa, and South Africa. The opposite of analytic
languages are synthetic languages, where inflections are used to express grammatical
properties. Examples 6 and 7 show the distinction between Vietnamese, a highly ana-
lytic (isolating) language with West Greenlandic, a highly synthetic (or polysynthetic)

language.

(6) Haiu.a bo? nhau la ti gia-inh thang chong.
two individual leave each.other be because.of family guy husband.

‘They divorced because of his family’

(Nguyen, 1997)
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(7) Paasi-nngil-luinnar-para illa-juma-sutit.
understand-not-completely-1SG.SBJ.3SG.OBJ.IND come-want-2SG.PTCP

‘I didn’t understand at all that you wanted to come along.’

(Fortescue, 1984)

It is important to note that the distinction between analytic and synthetic is not bipar-
tition, but rather continuum, ranging from the most analytic (no inflection) to the most
(poly)synthetic languages (Haspelmath, 2010). For example, although English has
more morphology than Vietnamese, it has a lot less morphology than many other lan-
guages, like Czech, Russian, Turkish, or Arabic. While there is no fixed measurement
for degree of synthesis, typically we assume languages which use a lot more morphol-
ogy than English as highly synthetic. Some literature also refer to these languages as

morphologically rich or morphologically complex languages.

Fusional languages are languages which realize multiple inflectional features in a
single morpheme. For example, English verbs express number, person, and tense in a
single affix. For example, the morpheme ‘-s’ in ‘wants’ represents third person singular
present tense (3RD.SG.PRES) features. Fusional process are commonly found in most
of Indo-European languages: Punjabi, Greek, Italian, German, Icelandic, all Baltic and

Slavic languages, among others.

Agglutinative languages are languages with a more one-to-one mapping between in-
flectional features and morphemes. Morphemes are concatenated to form a word and
the boundaries between morphemes are mostly clear. In theory, the concatenation
process can add an infinite number of morphemes and therefore languages with agglu-
tinative process typically have quite long words. Example of agglutinative languages
are Turkish, Finnish, and Hungarian. Below is an example of agglutinative process in
Turkish:

(8) oku-mal-y-m-z
read-NEC-BE-REP.PST-1PL

‘They say that we have to read’
(Kornfilt, 1997)
Templatic languages (also called root and pattern morphology) form words by in-

serting consonants and vowels into a consonantal root based on a given pattern. This

non-concatenative process is mainly found in Semitic languages, such as Arabic and
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Hebrew. While this particular morphological process has its own challenges since it
is quite different with other well-studied languages, there is also additional difficulty
as the available written text often do not exhibit the process. For example, Arabic is
typically written unvocalized (without the vowels) which often leads to one form have
different meanings. Table 2.7 gives examples of Arabic verbs derived from the root

morpheme ‘ktb’ (‘notion of writing’)

Pattern Verb stem Gloss

CiaCaCs katab *wrote’

CiaCyGraCs  kattab ’caused to write’
CiaaCaCs kaatab "corresponded’
aC1(CaCs aktab ’caused to write’
taCiaaCaCs  takaatab ’wrote to each other’

Table 2.7: Examples of Arabic verbs derived from root morpheme ktb. Each C; refers

to the consonant in position i (Roark and Sproat, 2007).

Reduplication is another kind of non-concatenative process where a word form is
produced by repeating part or all of the root to express new features. This process
is very common in Australia, South Asia, Austronesian, and many parts of Africa

(Rubino, 2013). Table 2.8 shows an example of reduplication in Indonesian.

Root Word form

anak ‘child’ anak-anak ’children’
buah fruit’  buah-buahan ’various fruits’
mobil  ’car’ mobil-mobilan "a toy car’

tolong ’help’  tolong-menolong  ’help each other’

merah ’red’ kemerah-merahan ’reddish’

Table 2.8: Full and partial reduplication in Indonesian.

We have just shown how morphology is expressed differently across languages, and
this has an implication that NLP models must account for all of these different typolo-
gies to process languages. In the next subsections, we will discuss how words and
morphology are actually modeled in NLP. For consistency, we will use mathematical

notation listed in Table 2.9 to described models that we used throughout this thesis.
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Notation Description

X a unit (word, morpheme, character, etc)
X=uj,...,u, decomposition of x into a sequence of |x| units
|x| size/length of x

1, one-hot vector for x

X a column vector

x! transpose of x

X],...,Xp a sequence of vectors

[x;y] concatenation of X and y

X a matrix

xT transpose of X

Table 2.9: Notation used throughout this thesis.

2.2 Language Modeling

We start our discussion by reviewing language modeling, which is the task of assigning
the probability of a sentence. Language model plays a central role in many NLP tasks
such as machine translation or speech recognition to assess the grammaticality and

fluency of a text or utterance.

Let w = wy,...,wr be a sequence of words in a sentence. We assume that each sen-
tence starts with a Begin-Of-Sentence (BOS) token and ends with an End-Of-Sentence
(EOS) token. Thus, in our notation wop = BOS and wr = EOS. Adding BOS and EOS
tokens allows us to properly model the probability of a word being the first or the last

word in a sentence. A language model computes the probability of w as:

T
P(w) = HP(W; | wo, .. wr—1) (2.1)
t=0

That is, the probability of a sentence is a product of probabilities of individual words,

each conditioned on the history of previous words in the sequence.

Recurrent Neural Network Language Model Mikolov et al. (2010) propose a lan-
guage model based on a recurrent neural network (RNN; Hochreiter, 1991), which, in

theory, can take infinite amount of context and thus can directly model Equation 2.1.

As can be referred from the term recurrent, an RNN language model assumes a se-

quence of inputs and processes them one by one in a successive order. Because inputs
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are processed in this way, it is common to refer to the order of the sequence as time
steps t € [0,N], where N + 1 is the length of the entire history. At each time step #, an
RNN computes the following:

h, =g(U"-w,+H" -h,_) (2.2)
Wig1 ~ softmax (VT -h,) (2.3)

where w; € R? is a continuous representation (or, equivalently an embedding) of the
current word, W, is the predicted target word that is drawn from the distribution over
all the possible target words, U € R4 H e R v € RIVI*" are model parame-
ters that are learned during training, d and & are the dimension of the word repre-
sentation and hidden layer, respesctively. Note that, since h; is computed recursively
from hy,... h;_1, an RNN language model can represent the entire history of previous

words.

Although in theory RNN should be able to store the entire history, in practice when it
processes a very long sequence, earlier information tends to be forgotten (Hochreiter,
1991). To address this, variants of RNN such as Long Short Term Memory (LSTM;
Hochreiter and Schmidhuber, 1997) or Gated Recurrent Unit (GRU; Cho et al., 2014)
are often preferred over the vanilla RNN. While the specific computations are different,
these models take the same inputs, outputs, and recursive form of Equations 2.2 and
2.3.

The standard evaluation metric to measure the quality of a language models is called
perplexity. Given a held-out fest data of length N, we calculate the perplexity of a

language model using the average cross-entropy H:
oo AH
perplexity =2 (2.4)

where H is defined as:

1 N
H = NZ—]ngp(Wi|WO7"‘7wi_l) (25)

i=1
In other words, Equation 2.5 computes the average negative log probability that our
language model assigns to each word in our test data. A good quality language model
assigns higher probability to an actual sentence that it has never seen before. Thus, the

lower perplexity, the better our language model in predicting the next word.
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2.3 Learning Word Representations

One main advantage of training a language model using a neural network is that now
we can automatically learn representation of words in our data. Recall from Equation
2.2, we use w; as the representation of the word token at time ¢ (w;). How w; is com-
puted? It could be simply a learned vector representation of w;, in which case it is a
lookup table or word embeddings. These representations are actually just parameters
of our language model; they are learned and optimized such that they can best ‘fit’ our
data. In fact, most of NLP models which are based on neural networks can also learn
such representations. The key idea is that the learned representation is influenced both
by the previous history (h;), and by the next words (w;), so this means the repre-
sentation is influenced by context. As a result, words with similar context will have
similar representations. This idea is similar to the distributional hypothesis (Harris,
1954; Firth, 1957) that inspired studies on traditional count-based word representa-

tions (Turney and Pantel, 2010; Landauer and Dumais, 1997).

Although technically we can learn word representations directly on the NLP task itself,
language model and its variants (Collobert and Weston, 2008; Mikolov et al., 2010,
2013; Peters et al., 2018) are still the most popular task to learn word representations.
This is because they can be trained on a very large, unannotated corpus, allowing us
to include as much contextual information as possible during learning. The learned
word representations can then be used to initialized word representations (hence called
pre-trained word embeddings) on the main NLP task that we are interested in. For
example, imagine a POS tagging model similar to our previous RNN language model,
where instead of predicting the next word Wy 1, we are now predicting the POS of the
input word at each time step. We can initialized the word lookup w; with a representa-

tion learned using language model rather than initialize it randomly.

Continuous word representations have almost become de facto input layer in many
NLP tasks. The reason on why they perform so well on many tasks is still not very well
understood, but one possible explanation is because the learned representations can
capture the syntactic regularities (‘big’ vs. ‘bigger’) as well as the semantic regularities
(‘big’ vs. ‘small’) among words (Mikolov et al., 2013). Efforts on understanding word
representations were also reflected on various recent workshops such as Representation

Learning for NLP (Rep4NLP?) and Analyzing and Interpreting Neural Networks for

3https://sites.google.com/view/repl4nlp2019
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NLP (BlackBoxNLP*) workshops. In this thesis, we specifically aim to understand the

morphological aspect of word representations.

2.3.1 Subword-Unit Based Word Representation Models

Despite their usefulness, standard word representation models still model words as
their atomic units. In Chapter 1, we discussed how this approach introduces limita-
tions to NLP models: it makes a closed vocabulary assumption, enabling only generic
OOV handling (using a generic “unknown” vector) and it can not exploit systematic
functional relationships in learning. To address these, recent work proposes to replace
lookup of w; with a function that composes representations of smaller units, such as
morphemes, morphs, character n-grams, or characters. In most of these cases, the
vocabulary is finite, which makes it possible to represent any word in the language.
Moreover, the use of subword-level information means that now words with similar
forms, either related morphologically (‘cat’ vs. ‘cats’) or not (‘best” vs. ‘bet’) can
share similar representations. This also means that rare and unseen words will have
more informative representations, especially when their morphologically variants are
seen during training. Next, we discuss each of these representations and how they are
used in NLP models.

Morphemes and Morphs When human-annotated datasets are available, morpho-
logical information can be incorporated into NLP models as features. Traditional
count-based vector models (Alexandrescu and Kirchhoff, 2006; Lazaridou et al., 2013)
typically treat each morphological feature/morph as a feature and compute word vector
representation using vector operations such as concatenation, addition, or multiplica-
tion on the feature vectors. For neural models, Cotterell and Schiitze (2015) augment a
neural language model with a multi-task objective, where a model is trained to jointly

predict the next word along with the next morphological feature.

In scenarios where there exists no human annotation, some studies have used mor-
phological analyzers to obtain tags or morphs. The morphological analyzer can be
learned via unsupervised methods (Creutz and Lagus, 2002) given text data as input,
or trained using supervised learning methods on a small amount of labeled data, which

is then used to predict tags for the remaining unlabeled data (Kohonen et al., 2010).

“https://blackboxnlp.github.io/
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For morphological segmentation where the goal is to approximate morphs (‘stopping’
— ‘stopp+ing’), there are two algorithms that have been widely used in neural NLP
models: Morfessor (Creutz and Lagus, 2007; Virpioja et al., 2011) and Byte Pair En-
coding (BPE; Gage, 1994). Morfessor segments words by recursively splitting words
to minimize an objective based on minimum description length (MDL) principle. Early
versions were entirely unsupervised, but the most recent version, Morfessor 2.0 (Smit
et al., 2014) also includes semi-supervised methods for utilizing annotated data. Luong
et al. (2013) embed morphs obtained from Morfessor and compose word representation
using recursive neural networks (Socher et al., 2011). Similarly, Botha and Blunsom
(2014) and Qiu et al. (2014) embed morphs as well as the original word form and sum

their embeddings to produce the final word representation.

BPE is a data compression technique adapted by Sennrich et al. (2016) for word seg-
mentation. It works by iteratively replacing frequent pairs of characters (‘a’, ‘b’) with
single unused character (‘ab’), which represent a character n-gram. Eventually, fre-
quent character n-grams (or frequent words) would each be represented by a symbol
while rare words would be segmented into their frequent character n-grams. BPE has
a single parameter which is the number of merge operations. The final vocabulary size
is the size of initial vocabulary (the number of distinct characters) plus the number
of merge operations. Sennrich et al. (2016) show that BPE is effective for handling
rare words in neural machine translation and after that BPE has became a popular
choice for representing words in machine translation (Johnson et al., 2017; Bansal
et al., 2019). A similar word segmentation algorithm (Schuster and Nakajima, 2012)
is used by Google’s neural machine translation system (Wu et al., 2016) and BERT
pretrained language model (Devlin et al., 2019) to segment word into subword units

called “wordpieces”.

Character N-grams Both Morfessor and BPE require training data to learn word
segmentation models. A rather simpler approach is to approximate morphs using the
word’s overlapping character n-grams (Table 2.10). Sperr et al. (2013) represent each
word using a binary vector indicating the occurrence of each possible character n-
gram in the word (n € {1,2,3,4}). Bojanowski et al. (2017) introduce fastText, which
is a model that represents a word by the sum of its character n-grams vectors (n €
{3,4,5,6}). Wieting et al. (2016) propose a similar model (n € {2,3,4}), but with an

additional elementwise non-linearity.
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Unit Output of 6(wants)

Morfessor Awant, s$

BPE Aw, ants$

char-trigram “wa, wan, ant, nts ts$

character Aw,a,n,t, s, $

analysis want+VB, +3RD, +SG, +PRES

Table 2.10: Morphs produced with Morfessor, BPE, and overlapping character trigrams

wants.

Characters Morfessor, BPE, and character n-grams (Table 2.10) implicitly assume
that morphemes are combined together using a concatenative process and that each
morpheme have the same realization on the surface word forms. However, there exist
languages with non-concatenative morphological processes (Section 2.1.2), and some-
times there can be changes to the surface morphemes when the morphemes are com-
bined together (‘stop’ + ‘-ing’ — ‘stopping’). An alternative option would be to model
words from characters instead of morphs. Character-level word representation models
do not require explicit word segmentation, instead they rely on neural networks to learn
the complex form-function relationship (Ling et al., 2015a; Lee et al., 2017). Santos
and Zadrozny (2014) propose a model that jointly use word-level and character-level
features to represent words for POS tagging. They apply a convolutional neural net-
work (CNN) to build a vector representation from character-level features and combine
it with word-level embedding. Kim et al. (2016) follow a similar approach but use only
character-level embeddings. Ling et al. (2015a) employ a different composition model
using a bidirectional LSTM over characters to represent inputs for language modeling
and POS tagging. These character-level models of Kim et al. (2016) and Ling et al.
(2015a) have now been used in many other NLP tasks, especially for processing mor-
phologically complex languages (Lee et al., 2017; Ataman and Federico, 2018; Sahin
and Steedman, 2018a). We will discuss each of these models more detail in the next

section and examine their relation to morphology in Chapters 3 and 4.
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2.3.2 Character-Level Word Representation Models

At the time of the writing, there are many variants of character-level word represen-
tation model, but most of them employ either a bidirectional LSTM (biLSTM) or a
convolutional neural network (CNN). It is important to note that while these models
were originally introduced to model characters, in practice they can be used for any

other subword units such as character n-grams or BPE.

Character-Level BiLSTM A natural way to compose a word representation from its
characters is to “read" the characters as a sequence. Ling et al. (2015a) introduce
a compositional character to word model based on biLSTMs (Graves et al., 2005),
which produces a word representation by modeling the complex non-local dependen-

cies between characters in a given word. We call this model charLSTM.

Figure 2.1 illustrates the architecture of the model. Let C be the vocabulary, which is
the set of all characters in the language. Given a word w = ¢y, ¢2,. .., c),|, €ach charac-
ter ¢; is represented by a one-hot encoding, which is then mapped into its continuous
representation (or character embedding), c¢;. At each time step i, we feed ¢; into a
biLSTM, which consists of an LSTM going over the sequence (forward LSTM) and
another LSTM going over the reverse input sequence (backward LSTM). An LSTM

computes the following hidden state for the character at position i:
h; = LSTM(¢;,h;_1) (2.6)

where h;_ is the hidden state at the previous time step.

Let hﬁw and hgw be the final hidden states of the forward and backward LSTMs, respec-
tively. We compute the final word representation by adding both final hidden states:

w, =W;-h/" + W, -h}" +b 2.7)
where Wy, W, and b are parameter matrices that are learned during training.”
Character-Level CNN Kim et al. (2016) propose a model which computes word rep-

resentations from their characters using a convolutional neural network (CNN). This

model, which we refer to as charCNN, is illustrated in Figure 2.2.

3 Another way to combine the forward and backward final LSTM states is by using concatenation.
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Figure 2.1: Character-level biLSTM model (figure from Ling et al. (2015a)).

Similar to charLSTM, charCNN also uses the set of characters in the language as its
vocabulary. Given a word ¢ =y, 2, ..., Ck, we first build a character embedding matrix
C € R?*k where the i-th column corresponds to the embeddings of c;. We then apply
a narrow convolution (without zero padding) between C and a filter F € R*" of width
n to obtain a feature map £ € R¥*+!, In particular, the computation of the j-th element
of fis defined as

f[j] = tanh((C[:,j: j+n—1],F)+b) (2.8)

where (A, B) is a component-wise inner (Hadamard) product and b is a bias. We then

calculate the max-over-time of the feature map:
Yj = max fl,] (2.9)

We just give an illustration for applying one filter which picks out a character n-gram.
In practice, the CNN model applies filters of varying width to representing different
length of n-grams. To produce the word representation, we concatenate the max-over-

time of each filter, w, = [y1,...,ym|, where m is the number of filters applied.

To model the complex interactions between character n-grams picked up by the filters,
we can apply a highway network, which allows some dimensions of w; to be carried

or transformed. An example for one layer of a highway network is as follows:

72=tOg(W,-w;+by)+(1—-t)Ow, (2.10)
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Figure 2.2: Character-level CNN model (figure from Kim et al. (2016)).

where g is a non-linearity function, t = 6(W; - w, +by) is a transform gate and (1 —t)

is the carry gate. Wy, is a weight parameter matrix and by, is a bias.

In terms of computational speed, character-level models are significantly slower than
the standard word lookup approach. Ling et al. (2015a) report that charLSTM is three
times slower than word lookup approach, while for charCNN, Kim et al. (2016) ob-
serve that it is twice as slow. With GPUs, charCNN is arguably faster than charLSTM
since the convolution operations have been optimized. For charLSTM, the model still
needs to perform two LSTMs traversals, which can be slow for longer words. The
authors of both models also mention some efficiency techniques to reduce the com-
putation time at the cost of memory, such as caching or pre-computation of the most

frequent words.

CharLSTM and charCNN along with BPE were the first models which popularized
the idea of open vocabulary model, which can essentially represent any given word
in the language, including OOV words. In the original papers, the authors applied
their models to language modeling, POS tagging, and machine translation, however in

practice these models can be plugged in any neural models as a word representation



26

Chapter 2. Background

3ui33e) onorjuksoydiowr

3ui33e) [eor3ojoydiow

uonodapuIal feor3ojoydiour

uone[SueRI) SUIYOBW

Surpoqe| @ouanbas

Surpopow a3en3ue|

uorje[SURI) QUIYOBW

Ajue[iurs piom

3ur33e) SO ‘AILIe[IluIS 90UIUAS PULB PIOoM
Sursred Aouspuadap

3u133e) SO ‘Surepow a3en3ue|
Surpopow o3en3ue|

UuonE[SuRI) JUIYOBW

Areruars Teor3ojoydiouwn ‘Surjopowr agen3ue|
3uI3se], SOd

A3o[eue piom ‘AJLIR[IWIS PIOM

Surpepow a3en3ue|

KJreqruurs prom

Surpopow o3en3ue|

NLSTIq elou
NND ‘NLSTH9
quou

NND

INLSTH
INLST9

NND ‘NLSTA
uonippe
uonippe
INLSTHY
INLSTHY

NND
ouou

uonIppe
NND
uonIppe
uonIppe

NN 9AISINOAI

uonippe

SIOJORIEYD ‘SPIOM

SIOJORIBYD ‘SPIOM

sasA[eue [eo13ojoydiow ‘siajoeIRYD
SI9)oRIRYD

SIOJORIBYD ‘SPIOM

SI9)0RIRYD ‘SpIOM

(10ssa101N) sydiow ‘s1ajoereyd
swreI3-u IajoeIeyd

sweI3-u IajoeIeyd

SI9)oBIRYD

SI9)oBIRYD

SI9)oBIRYD

(4d9) sydiouwr

sasA[eue [eor3ojoydiow ‘spiom
SIOJORIBYD ‘SPIOM

(10ssay107A) sydiow ‘spiom
(10ssay101A) sydiow ‘spiom
(10ssay101N) sydiow

SWeIS-U J9JORIRYD ‘SPIOoMm

(8107) "Te 32 10uyog

(L107) ‘T8 12 p[oSoH

(9107) 223nydS pue uuey|
(L107) Te 1099

(9107) 'Te 10 1Y

(9102) oyD pue ojoweAIA
(L107) 'Te 32 eAOWO[AA
(L107) 'Te 10 pismouelog
(9107) 'Te 12 Sunaip

(G107) Te 12 sox1sa[eyg
(8S107) T8 30 Sury

(9107) e 10 wry

(9107) 'Te 19 yoLuuag
(S10T) 273NYdS pue [[21910D)
(+107) Auzoipez pue sojues
(+102) Te 1w 1)

(+107) wosun|g pue eylog
(€107) e 32 Suon

(€107) "Te 10 112dg

ysey,

uonouny uonisoduro))

(s)yun) promqng

SIPPOIN

Previous work on representing words through compositions of subword

Table 2.11:
units.



Chapter 2. Background 27

ROOT

0BJ
NSUBJ \r 10BJ DET

She wrote me a letter
PRON VERB PRON DET NOUN

Figure 2.3: A projective dependency graph.

module or word encoders (§2.3.1). While they have shown to outperform standard
word lookup approach, these models have not been compared in any sort of systematic
way, nor do we know how well they represent morphology (Table 2.11). To have a
better understanding of these questions, Chapter 3 will present a systematic compari-
son of different subword units models and investigate how these models interact with

morphological typology.

2.4 Dependency Parsing

Next, we discuss dependency parsing, which we will use to assess the character-level

models in Chapters 4 and 5.

The main goal of dependency parsing is to automatically extract dependencies between
words in a sentence in the form of graph structure. It is inspired by the dependency
grammar, which states that syntactic structure is made up of binary, asymmetrical re-
lations between lexical items called dependencies. In the dependency graph structure,
nodes are words and each edge relates a syntactically subordinate word (the depen-
dent) to another word on which it depends (the head). Each edge has a dependency
label that defines the type of dependency. An artificial ROOT token is inserted at the
beginning of the sentence and acts as the root of the dependency graph. Due to this
single rooted structure, sometimes dependency graph is also called dependency tree. In
general, any dependency graphs are expected to satisfy (1) the single-head constraint,
which ensures that each node can only have exactly one head and (2) the acyclicity con-
straint, that enforces graphs to have no cycle. Figure 2.3 shows a dependency graph for
‘She wrote me a letter’. In this example, we say that ‘wrote’ is the head of ‘She’ and
that ‘She’ is the dependent of ‘wrote’. Finally, the dependency label NSUBJ defines
that ‘She’ is the subject of the predicate ‘wrote’.

One important property of dependency graphs is projectivity. A dependency graph
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NSUBJ

John saw the movie yesterday which was exciting
PRON VERB DET NOUN NOUN SCONJ VERB ADJ

Figure 2.4: A non-projective dependency graph.

is said to be projective if, when we put the words in their linear order, preceded by
an artificial ROOT, and draw dependencies between them in the semi-plane above the
words, there exist no crossing edges. When a dependency graph has crossing edges, it
is called non-projective. For example, dependency graph in Figure 2.3 is projective
while dependency graph in Figure 2.4 is non-projective because the edge (‘saw’ —
‘yesterday’) and the edge (‘movie’ — ‘exciting’) are crossing. Non-projectivity mostly
exists in languages with flexible word order or in complex sentences with long distance
dependencies. Since many languages require non-projective dependency analysis, it s
important to build parsers that can represent and parse non-projective dependencies
(McDonald et al., 2005; McDonald and Satta, 2007).

The most common method for evaluating dependency parses are Unlabeled Attach-
ment Score (UAS) and Labeled Attachment Score (LAS). UAS measures the per-
centage of words that are assigned the correct head, while LAS measures the percent-

age of words that are assigned the correct head and the correct dependency label.

Dependency analyses have been shown to be useful in many NLP applications, such
as question answering (Cui et al., 2005), machine translation (Carreras and Collins,
2009), and information extraction (Angeli et al., 2015), among others. Dependency
structure is often preferred to traditional lexical phrase structure due to its ability to
explicitly encode predicate-argument structure. It is also independent of word order,
making it more suitable for morphologically rich languages which have relatively free

word order.

Parsing Morphologically Rich Languages The growing interest in using depen-
dency analysis for multilingual NLP has led to the development of statistical parsing
methods in the past two decades. In 2006 and 2007, the Conference on Computational
Natural Language Learning (CoNLL) held shared tasks on multilingual dependency
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parsing (Buchholz and Marsi, 2006; Nivre et al., 2007) with the goal to uniformly
evaluate different parsing methods on typologically diverse languages. Based on the
shared task results on nine languages, the 2007 shared task organizers conclude that
“the most difficult languages are those that combine a relatively free word order with
a high degree of inflection” and hypothesize that “highly inflected languages with (rel-
atively) free word order need more training data” (Nivre et al., 2007). In light of this
finding, subsequent workshops and shared tasks on parsing morphologically rich lan-
guages (SPMRL; Seddah et al., 2013, 2014) were held to further advance studies on
this topic. Tsarfaty et al. (2010) identify three main challenges in parsing morphologi-
cally rich languages, namely (1) the architectural challenge which concerns about the
nature of input of the parsing system, (2) the modeling challenge which defines what
type of morphological information to be included in the parsing model, and (3) the
lexical challenge due to the high-level of morphological variation, that is how to guess

morphological analyses of an OOV words.

Beside parsing models, there were also efforts in developing more treebanks for lan-
guages other than English. In particular, there was an initiative to develop cross-lingual
treebanks with consistent syntactic dependency annotation across languages. This
was started by the development of Stanford Dependencies (de Marneffe et al., 2006;
de Marneffe and Manning, 2008), the Universal Dependency Treebank (UDT McDon-
ald et al., 2013), and then the Universal Dependencies (UD; Nivre et al., 2016). At the
time of the writing, the most recent UD version (2.4) covers more than 100 treebanks in
over 70 languages, way more than what was available back in CoNLL 2006 and 2007
shared tasks. Indeed, the release of UD treebanks has prompted substantial research
on multilingual and cross-lingual parsing, including the VarDial (Zampieri et al., 2017)
and the CoNLL UD shared tasks on multilingual dependency parsing (Zeman et al.,
2017a, 2018).

With the release of UD treebanks in multiple languages and the success of neural net-
work based models, it is natural to ask whether the same morphological challenges
identified by Tsarfaty et al. (2010) still exist when parsing morphologically rich lan-
guages. In particular, with the claim that character-level models learn morphology
(Ling et al., 2015a; Lee et al., 2017), we wonder if neural parsers with character-level
representations can solve the challenges (2) and (3). Next, we discuss previous studies
which try to shed light on this question by applying character-level models for depen-

dency parsing.
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Character-Level Models for Dependency Parsing For neural dependency parsing,
Ballesteros et al. (2015) is the first to use a character-level model in a transition-
based parser. They employ a charLSTM model to encode words and obtain improve-
ments over baseline word-level model on many morphologically rich languages. In the
CoNLL 2017 UD shared task on multilingual dependency parsing, the top three best
systems use different parsing models but all use character-level models to represent
words (Dozat et al., 2017; Shi et al., 2017; Bjorkelund et al., 2017), showing that they
are effective across many typologies. In the following 2018 shared task, almost all re-
ported systems use character-level models in their systems. CharLSTM and charCNN
are the two most popular choice of character-level models in the shared tasks (Zeman
et al., 2017b, 2018).

On the interaction between character-level features, pretrained word embeddings, and
POS tags, Smith et al. (2018b) observe that there are complex interactions between
the three when they are used in a transition-based dependency parser. When used in
isolation, each of them improves performance over a baseline system with randomly
initialized word embeddings. However, combining them in any form—two at a time,
or all three—often leads to a drop in performance. Their analysis shows that character-
level models are more important for rare and open-class words, while POS tag infor-
mation helps for disambiguating high-frequency function words. Stymne et al. (2018)
use the concatenation of the word-level embedding, a character-level embedding ob-
tained using charLSTM, and a treebank embedding as inputs for a multilingual model,
and see improvements over the monolingual baseline. In a related work, de Lhoneux
et al. (2018) study the parameter sharing of words, characters, and other model param-
eters for multilingual parsers. They find that the benefit of sharing word and character
parameters is more dependent on the languages, suggesting that they are highly sen-
sitive to phonological and morphosyntactic differences across languages. In line with
these studies, we also examine why character-level models are effective for depen-
dency parsing. In Chapter 4, we will study why character-level models are better than
word-level baseline model but worse than oracle with access to explicit morphological
analysis for monolingual parsers. We then extend this study to low-resource, multilin-

gual parsing models in Chapter 5.
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Representing Morphology using

Character-level Models

This chapter starts our work on understanding whether subword unit representation
models learn morphology. To provide a strong baseline, we survey the fundamental
experimental questions of subword unit models: the choice of subword unit, compo-
sitional model, and the interaction of morphological typology. We focus on language
modeling—the standard task for learning word representations—and evaluate these
models on ten typologically diverse languages. Our results extend previous findings
that character-level models are effective across typologies, and this is because they
learn orthographic similarities that are consistent with morphology. But we also find
room for improvement: these strong baselines are still not as good as a model with
access to morphology, even when learned from an order of magnitude more data. This
chapter is based on ACL 2017 publication (Vania and Lopez, 2017).

3.1 Motivation

How should we encode morphology in the word representations? In Chapter 2, we
briefly reviewed some of the word representation models, starting from the standard
word-level models to models which exploit subword-level information such as mor-
phological segments, character n-grams, or characters. Using subword units to repre-
sent morphology is appealing because it eliminates the needs of morphological anno-

tations or analyzers which are expensive to built and hardly available for many lan-

31
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guages. Subword unit representation models can seamlessly represent rare and OOV

words and they also have fewer parameters to learn.

Does NLP still benefit from prior knowledge of morphology, or can they be replaced
entirely by models of subword units? The relative merits of word, subword, and
character-level representation models are not fully understood because each new model
has been compared on different tasks and datasets, and often compared against word-
level models. To understand whether morphology is captured by these models, we first

need to build a solid subword-level baseline, by focusing on following questions:
1. How do representations based on subword units compare with each other?
2. What is the best way to compose subword representations?

To answer these questions, we performed a systematic comparison across different
models for the simple and ubiquitous task of language modeling. We present experi-
ments that vary (i) the type of subword unit; (ii) the composition function; and (iii) the

morphological typology.

Chapters 1 and 2 discuss the fact that languages are typologically diverse with respect
to their morphological processes, their degree of synthesis, and the types of morpho-
logical features that are encoded by these processes. Most of the subword unit models
implicitly assume concatenative morphology, but many widely-spoken languages fea-
ture non-concatenative morphology, and it is unclear how such models will behave on

these languages. Thus, it is also natural to ask:
3. Do character-level models capture morphology in terms of predictive accuracy?

4. How do different representations interact with languages of different morpho-

logical typologies?

To shed light on these questions, we further present oracle experiments by comparing

our solid baselines against gold morphological analyses. Our results show that:

1. For most languages, character-level representations outperform the standard word
representations. Most interestingly, a previously unstudied combination of char-
acter trigrams composed with biLSTMs performs best on the majority of lan-

guages.
2. BiLSTMs and CNNs are more effective composition functions than addition.

3. Character-level models learn functional relationships between orthographically
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Unit Output of 6(wants)

Morfessor Awant, s$
BPE Aw, ants$
char-trigram “wa, wan, ant, nts ts$

character Aw,a,n,t, s, $

analysis want+VB, +3RD, +SG, +PRES

Table 3.1: Input representations for wants.

similar words, but don’t (yet) match the predictive accuracy of models with ac-

cess to true morphological analyses.

4. Character-level models are effective across a range of morphological typologies,

but orthography influences their effectiveness.

3.2 Compositional Word Representation Models

We compare ten different models, varying subword units and composition functions
that have commonly been used in recent work, but evaluated on various different tasks

(see Table 2.11). Given a word w, we compute its representation w as:
w = f(W,,6(w)) (3.1)

where G is a deterministic function that returns a sequence of subword units; Wy is
a parameter matrix of representations for the vocabulary of subword units; and f is
a composition function which takes 6(w) and Wy as input and returns w. All of the

representations that we consider take this form, varying only in f and G.

3.2.1 Subword Units

We consider four variants of ¢ in Equation 3.1, each returning a different type of
subword unit: character, character trigram, or one of two types of morph which are
obtained from Morfessor 2.0 (Smit et al., 2014) or BPE segmentation. For Morfessor,

we use default parameters while for BPE we set the number of merge operations to
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10,000.12 When we segment into character trigrams, we consider all trigrams in the
word, including those covering notional beginning and end of word characters, as in

Sperr et al. (2013). Example output of & is shown in Table 3.1.

3.2.2 Composition Functions

Given a word w = 51,52, ..., Sy, €ach subword s; is represented by its embedding s;. We

use three variants of f in Equation 3.1 to produce word representation w:

* Addition. Our first composition function constructs the representation w by

adding the representations of its subwords:
n
W= Z Si (3.2)
i=1

The only subword unit that we don’t compose by addition is characters, since
this will produce the same representation for many different words (‘poodle’ vs.

‘looped’).

e BiLSTM. Our second composition function is a bidirectional long short term
memory network (biLSTM), which we adapt based on its use in the character-
level model of Ling et al. (2015a), as described in §2.3.2.

* CNN. The third composition function is a convolutional neural network (CNN)
with highway layers, as in Kim et al. (2016) (§2.3.2). Since it can learn character

n-grams directly, we only use the CNN with character input.

3.2.3 Language Model

We evaluate all the subword unit models on a language modeling task (§2.2). Our
language model is an LSTM variant of RNN language model (§2.2). Lets =wy,...,wr

be a sequence of words in a sentence. At each time step ¢, our LSTM receives input w;

'BPE takes a single parameter: the number of merge operations. We tried different parameter values
(1k, 10k, 100k) and manually examined the resulting segmentation on the English dataset. Qualitatively,

10k gave the most plausible segmentation and we used this setting across all languages.
2The best reported F-1 score for Morfessor 2.0 are: 0.749 for English, 0.558 for German, 0.432 for

Turkish, 0.342 for Arabic, and 0.501 for Finnish (Bergmanis and Goldwater, 2017). These scores are
calculated on the MorphoChallenge 2010 datasets: http://morpho.aalto.fi/events/morphochallenge2010.
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Figure 3.1: Our LSTM-LM architecture.

and predicts y,+1. Using Equation 3.1, it first computes representation w; of w;. Given

this representation and previous state h,_1, it produces a new state h, and predicts y; 1:

hl = LSTM(W;,ht_]) (33)
9,1 = softmax(V” -h,) (3.4)

where ¥, is the probability distributions over the words in the vocabulary. Note that
this design means that we can predict only words from a finite output vocabulary, so
our models differ only in their representation of context words. This design makes it
possible to compare language models using perplexity, since they have the same event
space.>>* The complete architecture of our system is shown in Figure 3.1, showing

segmentation function ¢ and composition function f from Equation 3.1.

3.3 Experiments

We perform experiments on ten languages with varying dominant morphological pro-

cesses (Table 3.2). We use datasets from Ling et al. (2015a) for English and Turk-

3Note that, while perplexities across event spaces are not directly comparable, we can still compare
their log-likehood and there are tricks to convert them into perplexities (Cotterell et al., 2018; Mielke
and Eisner, 2019).

4Open vocabulary word prediction which was a future work at the time our work is done is studied
recently by Matthews et al. (2018).
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Dominant Typology Languages #tokens #types

Czech 1.2M  125.4K
Fusional English 1.2M  81.1K

Russian 0.8M 103.5K

Finnish 1.2M  188.4K
Agglutinative Japanese 1.2M  59.2K

Turkish 0.6M 126.2K

Arabic 1.4M 137.5K
Root & Pattern

Hebrew 1.IM 104.9K

Indonesian 1.2M  76.5K

Reduplication .
Malaysian 1.2M 777K

Table 3.2: Statistics of our datasets.

ish. For Czech and Russian, we compile sentences from Universal Dependencies
(UD) v1.3 (Nivre et al., 2015), taking the word forms (second column in CoNLL-
U format), but skipping multiword tokens and empty nodes.” For other languages,
we use preprocessed Wikipedia datasets from Al-Rfou et al. (2013) which already
pre—tokenized.6 The Arabic and Hebrew datasets are unvocalized, while the Japanese
dataset mixes Kanji, Katakana, Hiragana, and Latin characters (for foreign words).
Hence, a Japanese character can correspond to a character, syllable, or word. For
each dataset, we use approximately 1.2M tokens to train, and approximately 150K to-
kens each for development and testing. Preprocessing involves lowercasing (except for

character models) and removing hyperlinks.

To ensure that we compared models and not implementations, we reimplemented all
models in a single framework using Tensorflow (Abadi et al., 2015).” We use a com-
mon setup for all experiments based on that of Ling et al. (2015a), Kim et al. (2016),
and Miyamoto and Cho (2016). In preliminary experiments, we confirmed that our

models produced similar patterns of perplexities for the reimplemented word and char-

>In UD, multiword tokens are indexed with integer ranges (1-2, 3-4, etc.) while empty nodes are

defined with decimals (2.1, 2.2, etc.).
®Wikipedia datasets are available at https:/sites.google.com/site/rmyeid/projects/polyglot
7Our implementation of these models can be found at https:/github.com/claravania/

subword-Istm-Im
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acter LSTM models of Ling et al. (2015a). Even following detailed discussion with
Ling (p.c.), we were unable to reproduce their perplexities exactly—our English reim-
plementation gives lower perplexities; our Turkish higher—but we do reproduce their
general result that character bi-LSTMs outperform word models. We suspect that dif-
ferent preprocessing and the stochastic learning explains differences in perplexities.
Our final model with bi-LSTMs composition follows Miyamoto and Cho (2016) as
it gives us the same perplexity results for our preliminary experiments on the Penn

Treebank dataset (Marcus et al., 1993), preprocessed by Mikolov et al. (2010).

3.3.1 Training and Evaluation

Our LSTM-LM uses two hidden layers with 200 hidden units and representation vec-
tors for words, characters, and morphs all have dimension 200. All parameters are
initialized uniformly at random from -0.1 to 0.1, trained by stochastic gradient descent
with mini-batch size of 32, time steps of 20, for 50 epochs. To avoid overfitting, we ap-
ply dropout with probability 0.5 on the input-to-hidden layer and all of the LSTM cells
(including those in the biLSTM, if used). For all models which do not use biLSTM
composition, we start with a learning rate of 1.0 and decrease it by half if the valida-
tion perplexity does not decrease by 0.1 after 3 epochs. For models with biLSTMs
composition, we use a constant learning rate of 0.2 and stop training when validation
perplexity does not improve after 3 epochs. For the character CNN model, we use the

same settings as the small model of Kim et al. (2016).

To make our results comparable to Ling et al. (2015a), for each language we limit the
output vocabulary to the most frequent 5000 training words plus an unknown word
token. To learn to predict unknown words, we follow Ling et al. (2015a): in training,
words that occur only once are stochastically replaced with the unknown token with

probability 0.5. To evaluate the models, we compute perplexity on the test data.

3.4 Results and Analysis

Table 3.3 presents our main results. In six of ten languages, character-trigram rep-
resentations composed with biLSTMs achieve the lowest perplexities. As far as we

know, this particular model has not been tested before, though character n-gram com-
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posed using addition has been proposed in the past (Sperr et al., 2013; Wieting et al.,
2016; Bojanowski et al., 2017). We can see that the performance of character, char-
acter trigrams, and BPE are very competitive. Composition by biLSTMs or CNN is
more effective than addition, except for Turkish. We also observe that BPE always
outperforms Morfessor, even for the agglutinative languages. We now turn to a more

detailed analysis by morphological typology.

Fusional languages. For these languages, character trigrams composed with biLSTMs
outperformed all other models, particularly for Czech and Russian (up to 20%), which

1s unsurprising since both are morphologically richer than English.

Agglutinative languages. We observe different results for each language. For Finnish,
character trigrams composed with biLSTMs achieves the best perplexity. Surprisingly,
for Turkish character trigrams composed via addition is best and addition also performs
quite well for other representations, potentially useful since the addition function is
simpler and faster than biLSTMs. We suspect that this is due to the fact that Turk-
ish morphemes are reasonably short, hence well-approximated by character trigrams.
For Japanese, the improvements from character models are more modest than in other

languages which we suspect due to the complexity of its orthography.

Root and Pattern. For these languages, character trigrams composed with biLSTMs
also achieve the best perplexity. We had wondered whether CNNs would be more
effective for root-and-pattern morphology, but since these data are unvocalized, it is
more likely that non-concatenative effects are minimized, though we do still find mor-
phological variants with consonantal inflections that behave more like concatenation.
For example, maktab (root:ktb) is written as mktb. We suspect this makes character tri-
grams quite effective since they match the tri-consonantal root patterns among words

which share the same root.

Reduplication. For Indonesian, BPE morphs composed with biLSTMs model obtain
the best perplexity. For Malay, the character CNN outperforms other models. However,
these improvements are small compared to other languages. This likely reflects that
Indonesian and Malay are only moderately inflected, where inflection involves both

concatenative and non-concatenative processes.

So far, we have compared subword unit representation models across different typolo-

gies. We answer Questions 1 and 2 in §3.1 by showing character-level models com-
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Table 3.3: Language model perplexities on test. The best model for each language

is highlighted in bold and the improvement of this model over the word-level model is

shown in the final column.

posed with bILSTM as strong baselines for representing morphology. The next set of

analyses focuses on Questions 3 and 4; whether character-level models capture mor-

phology in terms of predictive accuracy and their interactions with language typology.
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Languages addition bi-LSTM baseline

Czech 51.8 30.07 33.6
Russian 41.82 26.44 27.7

Table 3.4: Perplexity results using gold (hand-annotated) morphological analyses.
baseline shows the best perplexities achieved by subword unit models (character tri-
grams composed with biLSTM (cf. Table 3.3)).

3.4.1 Effects of Morphological Analysis

Do character-level capture morphology in terms of predictive accuracy? In the exper-
iments above, we used unsupervised morphological segmentation as a proxy for mor-
phological analysis (Table 3.1). However, this is quite approximate, so it is natural to
wonder what would happen if we had the true morphological analysis. If character-
level models are powerful enough to capture the effects of morphology, then they
should have the predictive accuracy of a model with access to this analysis. To find out,
we conducted an oracle experiment using the human-annotated morphological analy-
ses provided in the UD datasets for Czech and Russian, the only languages in our set
for which these analyses were available. In these experiments we treat the lemma and

each morphological feature as a subword unit.

The results (Table 3.4) show that biLSTM composition of these representations out-
performs all other models for both languages. These results demonstrate that neither
character representations nor unsupervised segmentation is a perfect replacement for
manual morphological analysis, at least in terms of predictive accuracy. In light of
character-level results, they imply that current unsupervised morphological analyzers

are poor substitutes for real morphological analysis.

However, we can obtain much more unannotated than annotated data, and we might
guess that the character-level models would outperform those based on morphological
analyses if trained on larger data. To test this, we ran experiments that varied the
training data size on three representation models: word, character-trigram biLSTM,
and character CNN. Since we want to see how much training data is needed to reach
perplexity obtained using annotated data, we use the same output vocabulary derived
from the original training. While this makes it possible to compare perplexities across
models, it is unfavorable to the models trained on larger data, which may focus on

other words. This is a limitation of our experimental setup, but does allow us to draw
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char trigram  char
#tokens word
bi-LSTM  CNN

M 39.69 32.34 35.15
M 37.59 36.44 35.58
3M 36.71 35.60 35.75
4M 35.89 32.68 35.93
SM 35.20 34.80 37.02
I0M  35.60 35.82 39.09

using morphological analysis 30.07

Table 3.5: Perplexity results on the Czech development data, varying training data size.

Perplexity using ~1M tokens annotated data is 28.83.

some tentative conclusions. As shown in Table 3.5, a character-level model trained
on an order of magnitude more data still does not match the predictive accuracy of a

model with access to morphological analysis.

3.4.2 Automatic Morphological Analysis

The oracle experiments show promising results if we have annotated data. But these
annotations are expensive, so we also investigated the use of automatic morphological
analysis. We obtained analyses for Arabic with the MADAMIRA 1.0 (Pasha et al.,
2014). On the Penn Arabic Treebank corpus, MADAMIRA obtains 84.1% accuracy
for predicting the correct morphological features (cf. EVALFULL metric in the orig-
inal paper). As in the experiment using annotations, we treated each morphological
feature as a subword unit. The resulting perplexities of 71.94 and 42.85 for addition
and bi-LSTMs, respectively, are worse than those obtained with character trigrams

(39.87), though it approaches the best perplexities.

3.4.3 Targeted Perplexity Results

A difficulty in interpreting the results of Table 3.3 with respect to specific morpholog-

ical processes is that perplexity is measured for all words. But these processes do not

8We only experimented with Arabic since MADAMIRA disambiguates words in contexts; most

other analyzers we found did not do this, and would require additional work to add disambiguation.
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Inflection Model all  frequent rare

Czech word 61.21 56.84  72.96

nouns characters 51.01 4794 59.01
char-trigrams 50.34 48.05 56.13
BPE 5338 4996 6281

morph. analysis 40.86  40.08  42.64

Czech word 81.37 7429 9940
verbs characters 70.75  68.07  77.11
char-trigrams 65.77 63.71  70.58
BPE 7418 7245  78.25

morph. analysis 59.48  58.56  61.78

Russian word 45.11 41.88  48.26
nouns characters 37.90 37.52  38.25
char-trigrams 36.32  34.19  38.40
BPE 43.57 43.67 43.47

morph. analysis 31.38 31.30 31.50

Russian word 5645 47.65 69.46
verbs characters 45.00 40.86  50.60
char-trigrams 42.55 39.05 47.17
BPE 5458 4781 64.12

morph. analysis  41.31 39.8 43.18

Table 3.6: Average perplexities of words that occur after nouns and verbs. Frequent
words occur more than ten times in the training data; rare words occur fewer times than

this. The best perplexity is in bold while the second best is underlined.

apply to all words, so it may be that the effects of specific morphological processes are
washed out. To get a clearer picture, we measured perplexity for only specific subsets
of words in our test data: specifically, given target word w;, we measure perplexity of
word w;;1. In other words, we analyze the perplexities when the inflected words of
interest are in the most recent history, exploiting the recency bias of our LSTM-LM.
This is the perplexity most likely to be strongly affected by different representations,

since we do not vary representations of the predicted word itself.

We look at several cases: nouns and verbs in Czech and Russian, where word classes

can be identified from annotations, and reduplication in Indonesian, which we can
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Language type-level (%) token-level (%)

Indonesian 1.10 2.60
Malay 1.29 2.89

Table 3.7: Percentage of full reduplication on the type and token level.

Model all frequent  rare

word 101.71 91.71 156.98
characters  99.21 91.35 13742
BPE 117.2 108.86 156.81

Table 3.8: Average perplexities of words that occur after reduplicated words in the test

set.

identify mostly automatically. For each analysis, we also distinguish between frequent
cases, where the inflected word occurs more than ten times in the training data, and

rare cases, where it occurs fewer than ten times. We compare only bi-LSTM models.

For Czech and Russian, we again use the UD annotation to identify words of interest.
The results (Table 3.6), show that manual morphological analysis uniformly outper-
forms other subword models, with an especially strong effect for Czech nouns, sug-
gesting that other models do not capture useful predictive properties of a morphological
analysis. We do however note that character trigrams achieve low perplexities in most
cases, similar to overall results (Table 3.3). We also observe that the subword models

are more effective for rare words.

For Indonesian, we exploit the fact that the hyphen symbol ‘-’ typically separates the
first and second occurrence of a reduplicated morpheme, as in the examples of Chap-
ter 2.1.2. We use the presence of word tokens containing hyphens to estimate the
percentage of those exhibiting reduplication. As shown in Table 3.7, the numbers are
quite low. Table 3.8 shows results for reduplication. In contrast with the overall results,
the BPE biLSTM model has the worst perplexities, while character biLSTM has the

best, suggesting that these models are more effective for reduplication.

Looking more closely at BPE segmentation of reduplicated words, we found that only
6 of 252 reduplicated words have a correct word segmentation, with the reduplicated

morpheme often combining differently with the notional start-of-word or hyphen char-
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acter. One the other hand BPE correctly learns 8 out of 9 Indonesian prefixes and 4 out
of 7 Indonesian suffixes.” This analysis supports our intuition that the improvement

from BPE might come from its modeling of concatenative morphology.

3.4.4 AQualitative Analysis

Table 3.9 presents nearest neighbors under cosine similarity for in-vocabulary, rare,
and out-of-vocabulary (OOV) words.!'? For frequent words, standard word embeddings
are clearly superior for lexical meaning. Character and morph representations tend to
find words that are orthographically similar, suggesting that they are better at modeling
dependent than root morphemes. The same pattern holds for rare and OOV words. We
suspect that the subword models outperform words on language modeling because they

exploit affixes to signal word class. We also noticed similar patterns in Japanese.

We analyze reduplication by querying reduplicated words to find their nearest neigh-
bors using the BPE biLSTM model. If the model were sensitive to reduplication, we
would expect to see morphological variants of the query word among its nearest neigh-
bors. However, from Table 3.10, this is not so. With the partially reduplicated query

berlembah-lembah, we do not find the lemma lembah.

3.5 Follow-up Work

We note some follow-up work inspired by this study which might shed more light on
this topic. Gerz et al. (2018a,b) conducted a large scale study of LSTM language mod-
els on 50 typologically diverse languages. They compared character-level CNN model
with standard word lookup approach and n-gram statistical language model. Differ-
ent from our study, they trained a language model that operates on the full vocabulary
setup, keeping all rare words in the modeled data. They further highlighted the main
problem with fixed vocabulary language model, that it gives overly optimistic perplex-
ity scores and that it can obscure the actual difficulty in modeling language, especially
when the language has large number of rare words due to productive morphological

process. Based on their results, they reported a strong correlation between perplexity

9We use Indonesian affixes listed in Larasati et al. (2011)
1Ohttps://radimrehurek.com/gensim/
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WSIWIPU Surproydn BUIAY [euonipeIUN AToAne3ou papnjour unu
wsidod Surpea3dn eoguRIpAY [euonmnsuodUn A[oAnyeaId Surpnpoxe uef
wsrepep Surpeo| JeIpAY [euonudIUIUN KToA0[ sopnjour uuewt NND
-Ieyo
wsIpIo] Suipeojun  ourjoldAXOIpAYy  [eUOnIULAUOOUN  A[OAR[SISO[ apnpour uju 1
pUB[aIO} J[nesInow JINeIpAY pajeuIpIOOdUN SQUO}SQARIS apnjour Kew
093 sysIfennuu Awo010191AY A[[euonipuooun AAne[ar sapnpout Krewt
INLST
A[rewogy wsTrenynu SorneIpAy pajeurAwUN Jyeorjdax Ayrensur Kuew
-Ieyo
se[nuLIO} 9193esnw PazA[oIpAy podewrepun sare[al uorsnpout Ikew 1
dn-oum P9101AUOD BIONI[AS [eurorpaw A[uowruiod Iopun e3ew
wisiAnoafqns PaIoIguod B[NJOIOS Iemoojowrun  Apeanonpoidar  SururuIopun M09 WILST
3ynb paloopye se[[LIIoN3 [euonnINsSuod  A[QAIBIOUQIAI sapnpout A sweagLy
s3oren poyuIp JuIdISAd0Ud[es  [BUONIMTISUOIUN AoIjosar apnjour Yew -IeyD
Kem100J PaI10]0d-puey J[qererdun Jrqereredun 1SB9[ Suneomn SpUE[IoIou
seruesned Surppuey poziprugAy snowrrueun AI[e1nuass? M 1X9)
NLST
wnayyaIAd Surstdn 189QLIRaY snoJouagun JoAQU QAJOAUT Iy
dd4
WSHUR[ISIA jeaqdn oziseyduro [euonIURIUIUN A[mau pareo 0
- - QUAAISUL ouraxdns anb sopnjout uowr
- - reradwur sjurof K19A apnpour uIp[Iyo
piom
- - Inok K[arey Supew Surmjesy QuoLue
- - wnuapgAow 1Zeu A[owonxa M uosxad
ws1poof Suipvojdn auvjdoipdy [puoyIPUOIUN WEXVIJEY! Suipnjou uvut
[°POIN
spiom AQO SPIOA\ QIey spiop\ Juanbarg

Table 3.9: Nearest neighbours of semantically and syntactically similar words.
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Query Top nearest neighbours
kota-kota wilayah-wilayah (areas), pulau-pulau (islands), negara-negara (countries),
(cities) bahasa-bahasa (languages), koloni-koloni (colonies)

berlembah-lembah | berargumentasi (argue), bercakap-cakap (converse), berkemauan (will),

(have many valleys) | berimplikasi (imply), berketebalan (have a thickness)

Table 3.10: Nearest neighbours of Indonesian reduplicated words in the BPE bi-LSTM

model.

and morphological typology; perplexity increases as the morphology becomes more
complex, from isolating, fusional, to the agglutinative ones. However, their study does
not yet address the question about oracle morphology, which would be an interesting

extension of our study.

Godin et al. (2018) investigated whether neural networks trained for type-level mor-
phological tagging task can discover patterns that coincides with morphological seg-
mentations and annotations defined by humans (‘-a’ in ‘econémicas’ indicates fem-
inine gender). Using either CNN or biLSTM as word encoder, they measured the
contributions of character sets by decomposing the output of neural networks into two
distinct groups of contributions: (1) those originating from a specific character or char-
acter sets, and (2) those originating from all other characters within the same word.
Experiments on three languages—Finish, Spanish, and Swedish—show that in almost
all cases the attribution follows the manually defined segmentation/annotations. Fur-
ther, they found the CNN based model keeps track on the most important suffix while
biLSTM tend to focus on both root and suffix.

Another way to examine how neural models encode linguistic knowledge is by looking
at their individual hidden units. Kementchedjhieva and Lopez (2018) examined indi-
vidual hidden units in a character-level language model by hand and concluded that
a character-level model can indeed “learn to identify linguistic units of higher order,
such as morphemes and words” and also “learn some underlying linguistic properties
and regularities of said units”. Pinter et al. (2019) also examined hidden units of POS
tagging models trained with character-level inputs but with automatic evaluation met-
ric. They found that the ability character-level biLSTM model in identifying POS can
be related to the typology properties of the language.

Finally, we also note some works that compare character-level models for other down-
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stream tasks, including semantic role labeling (Sahin and Steedman, 2018a), machine
translation (Ataman and Federico, 2018), and sentence pair modeling Lan and Xu
(2018).

3.6 Conclusions

In this chapter, we systematically compared word representation models with differ-
ent levels of morphological awareness, across languages with different morphological
typologies. We confirm previous findings that character-level models are effective es-
pecially for languages with complex morphological processes. Our qualitative analysis
suggests that they learn orthographic similarity of affixes, and lose the meaning of root
morphemes. We conclude that character-level models are effective because they cap-

ture orthographic regularities that are consistent with morphology.

Across languages with different typologies, our experiments show that character-level
models are most effective for agglutinative languages, followed by fusional languages,
and less for analytical languages. However, we note that these results do not generalize
to all languages, since factors such as morphology and orthography affect the utility of

these representations.

To test whether character-level models capture morphology, we compare them against
an oracle with access to gold morphological analysis. We show that character-level
models do not match the predictive accuracy of our oracle, even when learned with
an order of magnitude more data. This result suggests that character-level models do
not entirely capture morphology. Which aspects of morphology are not captured by
character-level models? In the next chapter, we will investigate this question more
deeply by diagnosing the representation learned by both character-level models and

the oracle.



Chapter 4

Character-Level Models and

Morphology in Dependency Parsing

In the previous chapter, we have established character-level models as strong base-
lines for morphologically-aware word representations. Our analysis suggests that they
learn orthographic similarities which are consistent with morphology and hence useful
for representing rare and OOV words. However, our oracle experiments also indicate
that character-level models do not entirely capture morphology. In this chapter, we
ask, which aspects of morphology are difficult to learn by these models? To answer
this question, we diagnose the character-level models and oracle performance on de-
pendency parsing—a task that benefits substantially from morphology. We show that
character-level models are poor in disambiguating words, particularly in the face of
case syncretism. We then demonstrate that explicitly modeling morphological case
improves our best parsing model, showing that character-level models can benefit
from targeted forms of explicit morphological modeling. This chapter is based on the
EMNLP 2018 publication (Vania et al., 2018) and its extension at the BlackBoxNLP
workshop (Vania and Lopez, 2018). Research was conducted in collaboration with
Andreas Grivas, which helped in the implementation of the dependency parser used in

this study.

48
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4.1 Motivation

The effectiveness of character-level models has raised a question and indeed debate
about explicit modeling of morphology in NLP. Ling et al. (2015b) propose that “prior
information regarding morphology ... among others, should be incorporated” into
character-level models, while Chung et al. (2016) counter that it is “unnecessary to
consider these prior information” when modeling characters. Whether we need to ex-
plicitly model morphology is a question whose answer has a real cost: as Ballesteros
et al. (2015) note, morphological annotation is expensive, and this expense could be

reinvested elsewhere if the predictive aspects of morphology are learnable from strings.

Morphemes typically have similar orthographic representations across words. Since
character-level models produce similar representations for orthographically similar
words, their effectiveness is often attributed to their ability in modeling morphology. In
Chapter 1, we mentioned a claim from Ling et al. (2015a) that character-level models
can “model the complex form-function relationship, which captures non-compositional
effects, where small orthographic differences may correspond to large semantic or syn-
tactic differences (butter vs. batter) ... in addition to the more regular effects due to,
e.g., morphological processes.". In Chapter 3, we showed that character-level mod-
els learn orthographic similarity of affixes, but they tend to lose the meaning of root

morphemes.

Do character-level models learn morphology? We view this as an empirical claim
requiring empirical evidence. The claim has been tested implicitly by comparing
character-level models to word lookup models on various NLP tasks (Kim et al., 2016;
Ling et al., 2015a; Ballesteros et al., 2015; Belinkov et al., 2017). In this chapter, we
test it explicitly, asking how character-level models compare with an oracle model with
access to morphological annotations. This extends our oracle experiments in Chapter
3 showing that character-aware language models in Czech and Russian benefit sub-
stantially from oracle morphology. However, here we focus on dependency parsing
(§2.4)—a task which benefits substantially from morphological knowledge—and we

experiment with twelve languages using a variety of techniques to probe our models.

Our summary finding is that character-level models lag the oracle in nearly all lan-
guages (§4.2). The difference is small, but suggests that there is value in modeling
morphology. When we tease apart the results by part of speech and dependency type,

we trace the difference back to the character-level model’s inability to disambiguate
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words even when encoded with arbitrary context (§4.3). Specifically, it struggles with
case syncretism, in which noun case—and thus syntactic function—is ambiguous. We
show that the oracle relies on morphological case, and that a character-level model
provided only with morphological case rivals the oracle, even when case is provided
by another predictive model (§4.4). Finally, we show that the crucial morphological
features vary by language (§4.5).

4.1.1 Parsing Model

We use a neural graph-based dependency parser combining elements of two recent
models (Kiperwasser and Goldberg, 2016; Zhang et al., 2017)." Let w = Wiy Wiy
be an input sentence of length |w| and let wy denote an artificial ROOT token. We
represent the ith input token w; by concatenating its word representation (described in

§4.1.2), e(w;) and part-of-speech (POS) representation, pi:2
x; = [e(w;);p;] 4.1)

We call x; the embedding of w; since it depends on context-independent word and POS
representations. We obtain a context-sensitive encoding h; with a bidirectional LSTM
(biLSTM), which concatenates the hidden states of a forward and backward LSTM at

position i. Using h{ and hf-’ respectively to denote these hidden states, we have:

h; = [h/;h?] (4.2)

17771

We use h; as the final input representation of w;.

4.1.1.1 Head prediction

For each word w;, we compute a distribution over all other word positions j € {0, ..., |w|}/i

denoting the probability that w; is the headword of w;.

exp(a(h;, h;
Y —oexp(a(hi,hy))

4.3)

"When this study was conducted, the model of Kiperwasser and Goldberg (2016) is the state-of-

the-art for dependency parsing on English and Chinese.
2This combination yields the best labeled accuracy according to Ballesteros et al. (2015).
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Here, a is a neural network that computes an association between w; and w; using

model parameters U,, W,, and v,,.

a(hi, hj) =V tanh(Uah,- + Wahj) “4.4)

4.1.1.2 Label prediction

Given a head prediction for word w;, we predict its syntactic label ¢, € L using a similar

network.

exp(f(h;, h;)[k])
T exp(f(h;,hy) k)

where L is the set of output labels and f is a function that computes label score using

Piaper (U | wi,wj,w) = 4.5)

model parameters Uy, Wy, and V:
f(h;,h;) = V,tanh(Ugh; + Weh;)) (4.6)

The model is trained to minimize the summed cross-entropy losses of both head and
label predictions. At test time, we apply the Chu-Liu-Edmonds (Chu and Liu, 1965;

Edmonds, 1967) algorithm to ensure well-formed, possibly non-projective trees.

4.1.2 Word representations

To confirm our finding in Chapter 3 on subword unit models, in particular the character-
level models, we again compare the word representation models of our neural parsers.
We consider the following five models to compute the word representation e(w;) in

Equation 4.1:
* word. Every word type has its own learned vector representation.

* charLSTM. Characters are composed using a biLSTM (Ling et al., 2015a), and
the final states of the forward and backward LSTMs are concatenated to yield the

word representation. This model is equivalent to the charLSTM model described
in §2.3.2.

* charCNN. Characters are composed using a convolutional neural network (Kim
etal., 2016). This model is equivalent to the charCNN model described in §2.3.2.
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 trigramL.STM. Character trigrams are composed using a biLSTM, an approach
that we previously found to be effective across typologies (Vania and Lopez,
2017).

» oracle. We treat the morphemes of a morphological annotation as a sequence
and compose them using a biLSTM. We only use universal inflectional fea-
tures defined in the UD annotation guidelines (Appendix A.1). For example,
the morphological annotation of chases is [CHASE, PERSON=3RD, NUM-SG,
TENSE=PRES].

Throughout this chapter, we use the name of model as shorthand for the dependency

parser that uses that model as input (Equation 4.1).

4.2 Experiments

Data We experiment on twelve languages with varying morphological typologies
(Table 4.1) in the Universal Dependencies (UD) treebanks version 2.0 (Nivre et al.,
2017).> Note that while Arabic and Hebrew follow a root & pattern typology, their
datasets are unvocalized, which might reduce the observed effects of this typology.
However, their UD annotations use a two-level indexing scheme such that the basic
units of the dependency trees are morphemes instead of standard word forms.* Since
morphological and syntactic annotation is only defined at the word form level, we
ignore multiword tokens and empty nodes (for the analysis of ellipsis) in the treebanks,
and only use the word form level information in all of our experiments.> We use
gold sentence segmentation, tokenization, universal POS (UPOS), and morphological
(XFEATS) annotations provided in UD.

Implementation and training Our Chainer (Tokui et al., 2015) implementation en-
codes words (Equation 4.2) in two-layer biLSTMs with 200 hidden units, and uses 100
hidden units for head and label predictions (output of Equations 4.4 and 4.6). We set
batch size to 16 for charCNN and 32 for other models following a grid search. We

3For Russian we use the UD_Russian_SynTagRus treebank, and for all other languages we use the

default treebank.
“4These basic units are called syntactic words in the UD terminology.
>In UD, multiword tokens are indexed with integer ranges (1-2, 3-4, etc.) while empty nodes are

defined with decimals (2.1, 2.2, etc.).
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Languages #sents #tokens type/token

(K) (K)  ratio (%)
Finnish 12.2 162.6 28.5
Turkish 3.7 38.1 33.6
Czech 68.5 1173.3 9.5
English 12.5 204.6 8.1
German 14.1 269.6 17.7
Hindi 13.3 281.1 6
Portuguese 8.3 206.7 11.7
Russian 48.8 870 114
Spanish 14.2 382.4 11.1
Urdu 4.0 108.7 8.8
Arabic 6.1 223.9 10.3
Hebrew 5.2 137.7 11.7

Table 4.1: Training data statistics. Languages are grouped by their dominant morpho-

logical processes, from top to bottom: agglutinative, fusional, and root & pattern.

apply dropout to the embeddings (Equation 4.1) and the input of the head prediction.
We use Adam optimizer with initial learning rate 0.001 and clip gradients to 5, and
train all models for 50 epochs with early stopping. For the word model, we limit our
vocabulary to the 20K most frequent words, replacing less frequent words with an un-
known word token. The charLSTM, trigramLLSTM, and oracle models use a one-layer
biLSTM with 200 hidden units to compose subwords. For charCNN, we use the small
model setup of Kim et al. (2016).

Parsing Results Table 4.2 presents test results for every model on every language,
establishing three results. First, they support previous findings that character-level
models outperform word-based models—indeed, the charLSTM model outperforms
the word model on LAS for all languages except Hindi and Urdu for which the results
are identical.® Second, they establish strong baselines for the character-level models:
the charLSTM generally obtains the best parsing accuracy, closely followed by char-

CNN. Third, they demonstrate that character-level models rarely match the accuracy

®Note that Hindi and Urdu are mutually intelligible.
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Model — word charLSTM charCNN  trigramL.STM oracle o/c
J Language UAS LAS UAS LAS UAS LAS UAS LAS | UAS LAS | LAS
Finnish 857 808 90.6 884 899 875 897 87.0 90.6 88.8 | +0.4
Turkish 714 616 747 686 744 679 732 659 753 69.5 | +0.9
Czech 92.6 893 935 906 935 90.6 927 89.2 943 920 | +14
English 90.6 889 913 894 91.7 90.0 904 88.5 91.7 899 | +0.5
German 88.1 845 880 845 878 844 871 835 88.8 86.5 | +2.0
Hindi 95.8 93.1 957 933 957 932 934 898 959 933 | -
Portuguese 87.4 855 87.8 860 877 86.0 86.7 8438 88.0 86.5 | +0.5
Russian 924 90.1 940 924 938 921 920 895 944 933 | +0.9
Spanish 894 869 898 874 90.0 873 886 855 90.0 87.7 | +0.3
Urdu 91.1 870 912 87.1 913 872 886 835 90.9 87.0 | -0.1
Arabic 75,5 709 76,7 721 76.6 722 746 6389 76.7 727 | +0.6
Hebrew 735 698 734 698 733 698 713 67.1 73.3  70.0 | +0.2

Table 4.2: Unlabeled Attachment Score (UAS) and Labeled Attachment Score (LAS) on
test set. The best accuracy for each language is highlighted in bold for all models, and
for all non-oracle models. o/c: LAS improvement from charLSTM to oracle.

of an oracle model with access to explicit morphology. This reinforces our finding in
Chapter 3: character-level models are effective tools, but they do not learn everything
about morphology, and they seem to be closer to oracle accuracy in agglutinative rather

than in fusional languages (Vania and Lopez, 2017).

4.3 Analysis

4.3.1 Why do characters beat words?

In character-level models, orthographically similar words share many parameters, so
we would expect these models to produce good representations of OOV words that are
morphological variants of training words. Does this effect explain why they are better

than word-level models?
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dev  LAS improvement

Language

%00V non-OOV OOV
Finnish 23.0 6.8 17.5
Turkish 24.0 4.6 13.5
Czech 5.8 1.4 39
English 6.8 0.7 5.2
German 9.7 0.9 0.7
Hindi 4.3 0.2 0.0
Portuguese 8.1 0.3 1.3
Russian 8.4 2.1 6.9
Spanish 7.0 0.4 0.7
Arabic 8.0 1.2 7.3
Hebrew 9.0 0.2 1.3

Table 4.3: LAS improvements (charLSTM — word) for non-OOV and OOV words on

development set.

4.3.1.1 Sharing parameters helps with both seen and unseen words

Table 4.3 shows how the character model improves over the word model for both non-
OOV and OOV words. On the agglutinative languages Finnish and Turkish, where the
OOV rates are 23% and 24% respectively, we see the highest LAS improvements, and
we see especially large improvements in accuracy of OOV words. However, the effects
are more mixed in other languages, even with relatively high OOV rates. In particular,
languages with rich morphology like Czech, Russian, and (unvocalised) Arabic see
more improvement than languages with moderately rich morphology and high OOV
rates like Portuguese or Spanish. This pattern suggests that parameter sharing between
pairs of observed training words can also improve parsing performance. For example,
if “dog” and “dogs” are observed in the training data, they will share activations in

their context and on their common prefix.
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Language Model ADJ NOUN PRON PROPN VERB | Overall
Finnish Y%tokens 8.1 32.5 8.2 6.7 16.1 -

charLSTM 89.2  82.1 88.1 84.5 88.4 87.7
oracle 90.3 833 89.5 86.2 89.3 88.5
diff +1.1 +1.2 +1.4 +1.7 +0.9 +0.8
Czech 9otokens 14.9 28.7 3.6 6.3 10.7 -
charLSTM 942  83.6 85.3 84.3 90.7 91.2
oracle 948  87.5 88.5 86.8 91.1 92.5
diff +0.6 +39 +3.2 +2.5 +0.4 +1.3
German Ytokens 7.6 20.4 9.5 5.6 12.1 -
charLSTM 884 814 86.0 82.4 85.2 87.5
oracle 89.1 87.1 93.2 84.4 86.3 89.7
diff +0.7  +5.7 +7.2 +2.0 +1.1 +2.2
Russian 9otokens 12.2 29.3 6.1 4.6 13.7 -
charLSTM 932  86.7 92.0 80.2 88.5 91.6
oracle 93.7  88.8 93.3 86.4 88.9 92.6
diff +0.5 +2.1 +1.3 +6.2 +0.4 +1.0

Table 4.4: Labeled accuracy for different parts of speech on development set.

4.3.2 Why do morphemes beat characters?

56

Let’s turn to our main question: what do character-level models learn about morphol-

ogy? To answer it, we compare the oracle model to charLSTM, our best character-level

model.

4.3.2.1 Morphological analysis disambiguates words

In the oracle, morphological annotations disambiguate some words that the charLSTM

must disambiguate from context. Consider these Russian sentences from Baerman

et al. (2005):
(9) Masa Citaet pis'mo
Masha reads letter

‘Masha reads a letter.’
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Figure 4.1: LAS improvements (oracle — charLSTM) for ambiguous and unambiguous

words on development set.

(10) Na stole lezit pis’'mo
on table lies letter

‘There’s a letter on the table.’

Pis’mo (“letter”) acts as the subject in Example (9), and as object in Example (10).
This knowledge is available to the oracle via morphological case: in Example (9), the
case of pis‘mo is nominative and in Example (10) it is accusative. Could this explain

why the oracle outperforms the character model?

To test this, we look at accuracy for word types that are empirically ambiguous—those
that have more than one morphological analysis in the training data. Note that by this
definition, some ambiguous words will be seen as unambiguous, since they were seen
with only one analysis. To make the comparison as fair as possible, we consider only
words that were observed in the training data. Figure 4.1 compares the improvement
of the oracle on ambiguous and seen unambiguous words, and as expected we find that
handling of ambiguous words improves with the oracle in almost all languages. The

only exception is Turkish, which has the least training data.

4.3.2.2 Morphology helps for nouns

Now we turn to a more fine-grained analysis conditioned on the annotated part-of-
speech (POS) of the dependent. We focus on four languages where the oracle strongly

outperforms the best character-level model on the development set: Finnish, Czech,
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Figure 4.2: Heatmaps of the difference between oracle vs. charLSTM confusion ma-
trices for label prediction when both head predictions are correct (x-axis: predicted
labels; y-axis: gold labels). Blue cells have higher oracle values, red cells have higher
charLSTM values.

German, and Russian.” We consider five POS categories that are frequent in all lan-
guages and consistently annotated for morphology in our data: adjective (ADJ), noun
(NOUN), pronoun (PRON), proper noun (PROPN), and verb (VERB).

Table 4.4 shows that the three noun categories—ADJ, PRON, and PROPN—benefit
substantially from oracle morphology, especially for the three fusional languages:

Czech, German, and Russian.

4.3.2.3 Morphology helps for subjects and objects

We analyze results by the dependency type of the dependent, focusing on types that
interact with morphology: root, nominal subjects (nsubj), objects (obj), indirect ob-
jects (iobj), nominal modifiers (nmod), adjectival modifier (amod), obliques (obl), and

(syntactic) case markings (case).

Figure 4.2 shows the differences in the confusion matrices of the charLSTM and oracle
for those words on which both models correctly predict the head. The differences on
Finnish are small, which we expect from the similar overall LAS of both models. But

for the fusional languages, a pattern emerges: the charLSTM consistently underper-

"This is slightly different than on the test set, where the effect was stronger in Turkish than in
Finnish. In general, we found it difficult to draw conclusions from Turkish, possibly due to the small

size of the data.
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forms the oracle on nominal subject, object, and indirect object dependencies—labels
closely associated with noun categories. From inspection, it appears to frequently
mislabel objects as nominal subjects when the dependent noun is morphologically am-
biguous. For example, in the sentence of Figure 4.3, Geldnde (“terrain”) is an object,
but the charLSTM incorrectly predicts that it is a nominal subject. In the training data,

Geldnde is ambiguous: it can be accusative, nominative, or dative.

In German, the charLSTM frequently confuses objects and indirect objects. By inspec-
tion, we found 21 mislabeled cases, where 20 of them would likely be correct if the
model had access to morphological case (usually dative). In Czech and Russian, the
results are more varied: indirect objects are frequently mislabeled as objects, obliques,
nominal modifiers, and nominal subjects. We note that indirect objects are relatively

rare in these data, which may partly explain their frequent mislabeling.

4.4 Characters and case syncretism

So far, we’ve seen that for our three fusional languages—German, Czech, and Russian—
the oracle strongly outperforms a character model on nouns with ambiguous morpho-
logical analyses, particularly on core dependencies: nominal subjects, objects and in-
direct objects. Since the nominative, accusative, and dative morphological cases are
strongly (though not perfectly) correlated with these dependencies, it is easy to see
why the morphologically-aware oracle is able to predict them so well. We hypoth-
esized that these cases are more challenging for the character model because these
languages feature a high degree of syncretism—functionally distinct words that have
the same form—and in particular case syncretism. For example, referring back to ex-
amples (9) and (10), the character model must disambiguate pis‘mo from its context,

whereas the oracle can directly disambiguate it from a feature of the word itself.?

To understand this, we first designed an experiment to see whether the charLSTM
could successfully disambiguate noun case, using a diagnostic classifier (Veldhoen
et al., 2016a; Shi et al., 2016; Adi et al., 2017)—a method that has been used pre-
viously to analyze representations learned by neural machine translation models (Be-

linkov et al., 2017). We train a neural classifier that takes as input a word representation

8We are far from first to observe that morphological case is important to parsing: Seeker and Kuhn

(2013) observe the same for non-neural parsers.
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nsubj

Ein eigenes Gelidnde gib es nicht

a private area exist _ not
DET ADIJ NOUN VERB PRON PART
Case=Acc Case=Nom

Figure 4.3: A sentence which the oracle parses perfectly (shown in white) and the
charLSTM predicts an incorrect label (shown in black).

from the trained parser and predicts a morphological feature of that word—for exam-
ple that its case is nominative (CASE=NOM). The classifier is a feedforward neural
network with one hidden layer, followed by a ReLU non-linearity. We consider two
representations of each word: its embedding (x;; Eq. 4.1) which is context-insensitive,
and its encoding (h;; Eq 4.2) which is context-sensitive. To understand the importance
of case, we consider it alongside number and gender features as well as whole feature
bundles.

4.4.1 The oracle relies on case

Table 4.5 shows the results of morphological feature classification. The oracle em-
beddings have almost perfect accuracy—and this is just what we expect, since the
representation only needs to preserve information from its input. For the fusional
languages—Czech, German, and Russian—the charLSTM embeddings perform well
on some features, except on case. This results suggest that the character-level mod-
els still struggle to learn case when given only the input text. We observe a slightly
different pattern on Finnish results. The character embeddings achieves almost sim-
ilar performance as the oracle embeddings. This results highlights the differences in

morphological process between Finnish and the other fusional languages.

The classification results from the encoding are particularly interesting: the oracle
still performs very well on morphological case, but less well on other features, even
though they appear in the input. In the character model, the accuracy in morphological
prediction also degrades in the encoding—except for case, where accuracy on case

improves by up to ~19%.

These results make intuitive sense: representations learn to preserve information from
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) embedding encoder
Language Feature baseline

char oracle char oracle

Czech Case 71.1 744 100 86.5 98.6
Gender 929 981 100 71.2 58.6
Number 889 947 100 842 84.8
All 704 725 999 58.1 50.2

German  Case 352 357 100 80.8 99.7
Gender 56.8 63.6 100 75.7 78.0
Number 59.1 67.1 100 783 939
All 340 343 100 63.6 785

Russian Case 71.6 80.5 100 904 98.5
Gender 87.7 974 100 699 57.3
Number  83.7 945 100 85.7 83.8

All 713 772 999 569 472
Finnish ~ Case 56.0 96.7 100 889 914
Number 564 974 100 819 895
All 558 950 91.6 740 827

Table 4.5: Morphological tagging accuracy from representations using the charLSTM
and oracle embedding and encoder representations. Baseline simply chooses the most

frequent tag. All means we concatenate all annotated features in UD as one tag.

their input that is useful for subsequent predictions. In our parsing model, morpholog-
ical case is very useful for predicting dependency labels, and since it is present in the
oracle’s input, it is passed almost completely intact through each representation layer.
The character model, which must disambiguate case from context, draws as much ad-
ditional information as it can from surrounding words through the LSTM encoder. But
other features, and particularly whole feature bundles, are presumably less useful for

parsing, so neither model preserves them with the same fidelity.”

9This finding is consistent with Ballesteros (2013) which performed careful feature analysis on mor-
phologically rich languages and found that lemma and case features provide the highest improvement

in a non-neural transition based parser compared to other features.
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4.4.2 Explicitly modeling case improves parsing accuracy

Our analysis indicates that case is important for parsing, so it is natural to ask: Can we
improve the neural model by explicitly modeling case? To answer this question, we
ran a set of experiments, considering two ways to augment the charLSTM with case
information: multitask learning (MTL; Caruana, 1997) and a pipeline model in which
we augment the charLSTM model with either predicted or gold case. For example,
we use [p, 1, z, z, a, NOM] to represent pizza with nominative case. For MTL, we
follow the setup of Sggaard and Goldberg (2016) and Coavoux and Crabbé (2017). We
increase the biLSTMs layers from two to four and use the first two layers to predict

morphological case, leaving out the other two layers specific only for parser.

For the pipeline model, we first train a morphological tagger to predict morphological
case. We adapt the parser’s encoder architecture for our morphological tagger. Fol-
lowing notation in Section 4.1.1, each word w; is represented by its context-sensitive
encoding, h; (Eq. 4.2). The encodings are then fed into a feed-forward neural network
with two hidden layers—each has a ReLLU non-linearity—and an output layer mapping
the to the morphological tags, followed by a softmax. We set the size of the hidden
layer to 100 and use dropout probability 0.2. We use Adam optimizer with initial learn-
ing rate 0.001 and clip gradients to 5. We train each model for 20 epochs with early

stopping. The model is trained to minimized the cross-entropy loss.

Since we do not have additional data with the same annotations, we use the same UD
dataset to train our tagger. To prevent overfitting, we only use the first 75% of training
data for training.!” After training the taggers, we predict the case for the training,
development, and test sets and use them for dependency parsing. This tagger does not

share parameters with the parser.

Table 4.6 summarizes the results on Czech, German, and Russian. We find augment-
ing the charLSTM model with either oracle or predicted case improve its accuracy,
although the effect is different across languages. The improvements from predicted
case results are interesting, since in non-neural parsers, predicted case usually harms
accuracy (Tsarfaty et al., 2010). However, we note that our taggers use gold POS,
which might help. The MTL models achieve similar or slightly better performance

than the character-only models, suggesting that supplying case in this way is benefi-

10We tried other settings, i.e. 25%, 50%, 100%, but in general we achieve best result when we use

75% of the training data.
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Language Input Dev Test
Czech char 91.2 90.6
char (multi-task) 91.6 91.0

char + predicted case 92.2 91.8

char + gold case 92.3 91.9
oracle 92,5 92.0
German  char 87.5 84.5
char (multi-task) 87.9 844

char + predicted case 87.8 86.4

char + gold case 90.2 86.9
oracle 89.7 86.5
Russian char 91.6 924
char (multi-task) 922 92.6

char + predicted case 92.5 93.3

char + gold case 92.8 935
oracle 92.6 933

Table 4.6: LAS results when case information is added. We use bold to highlight the

best results for models without explicit access to gold annotations.

cial. Curiously, the MTL parser is worse than the the pipeline parser, but the MTL
case tagger is better than the pipeline case tagger (Table 4.7). This indicates that the
MTL model must learn to encode case in the model’s representation, but must not learn
to effectively use it for parsing. Finally, we observe that augmenting the charLSTM
with either gold or predicted case improves the parsing performance for all languages,
and indeed closes the performance gap with the full oracle, which has access to all
morphological features. This is especially interesting, because it shows using carefully
targeted linguistic analyses can improve accuracy as much as wholesale linguistic anal-

ysis.
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Dev Test
Language Y%case

PL MT PL MT

Czech 66.5 954 96.7 952 96.6
German 36.2  92.6 92.0 90.8 914
Russian 55.8 958 96.5 959 96.5

Table 4.7: Case accuracy for case-annotated tokens, for pipeline (PL) vs. multitask
(MT) setup. %case shows percentage of training tokens annotated with case.

4.5 Understanding head selection

The previous experiments condition their analysis on the dependent, but dependency
is a relationship between dependents and heads. We also want to understand the im-
portance of morphological features to the head. Which morphological features of the

head are important to the oracle?

4.5.1 Composing features in the oracle

To see which morphological features the oracle depends on when making predictions,
we augmented our model with a gated attention mechanism following Kuncoro et al.
(2017). Our new model attends to the morphological features of candidate head w;
when computing its association with dependent w; (Eq. 4.3), and morpheme represen-

tations are then scaled by their attention weights to produce a final representation.

Let fi1,---, fix be the k morphological features of w;, and denote by f;;,--- ,f; their
corresponding feature embeddings. As in §2.4, h; and h; are the encodings of w; and

w}, respectively. The morphological representation m; of w; is:
m; = [fi,-- 3] 'k 4.7)
where K is a vector of attention weights:
k = softmax([f;1, -~ ,f] Vh;) (4.8)

The intuition is that dependent w; can choose which morphological features of w;

are most important when deciding whether w; is its head. Note that this model is
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asymmetric: a word only attends to the morphological features of its (single) parent,

and not its (many) children, which may have different functions. !!

We combine the morphological representation with the word’s encoding via a sigmoid

gating mechanism.

zj:g®hj+(1—g)®mj 4.9)
g=0(Wih; +Wom;) (4.10)

where © denotes element-wise multiplication. The gating mechanism allows the model
to choose between the computed word representation and the weighted morphologi-
cal representations, since for some dependencies, morphological features of the head
might not be important. In the final model, we replace Equation 4.3 and Equation 4.4

with the following:

exp(a(h;,z;))

Pheaa(wjlwi,w) = @.11)
caa Zl}{zoexpa(hi,zﬂ)
a(h;,z;) = v,stanh(Ush; + W,z) (4.12)
The modified label prediction is:
exp(f(h;,z;)k
Pravet (bl wiy wjsw) = — p(f (hi.2;)[K) (4.13)
Zk/:() eXp(f(hi,zj)[k’])
where f is again a function to compute label score:
f(hi, Zj) = Vg tanh(Ugh,- —|—Wng) (4.14)

4.5.2 Attention to headword morphological features

We trained our augmented model (oracle-attn) on Finnish, German, Czech, and Rus-
sian. Its accuracy is very similar to the oracle model (Table 4.8), so we obtain a more

interpretable model with no change to our main results.

Next, we look at the learned attention vectors to understand which morphological fea-
tures are important, focusing on the core arguments: nominal subjects, objects, and

indirect objects. Since our model knows the case of each dependent, this enables us to

"This is a simple and much less computationally demanding variant of the model of Dozat et al.

(2017), which uses different views for each head/dependent role.
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oracle oracle-attn
Language

UAS LAS UAS LAS

Finnish 89.2 873 889 869
Czech 934 913 935 913
German 90.4 88.7 90.7 89.1
Russian 93.9 928 938 927

Table 4.8: Our attention experiment results on development set.

understand what features it seeks in potential heads for each case. For simplicity, we

only report results for words where both head and label predictions are correct.

Figure 4.4 shows how attention is distributed across multiple features of the head word.
In Czech and Russian, we observe that the model attends to Gender and Number when
the noun is in nominative case. This makes intuitive sense since these features often
signal subject-verb agreement. As we saw in earlier experiments, these are features
for which a character model can learn reliably good representations. For most other
dependencies (and all dependencies in German), Lemma is the most important feature,
suggesting a strong reliance on lexical semantics of nouns and verbs. However, we
also notice that the model sometimes attends to features like Aspect, Polarity, and
VerbForm—since these features are present only on verbs, we suspect that the model
may simply use them as convenient signals that a word is verb, and thus a likely head

for a given noun.

4.6 Conclusions

In Chapter 1, we stated our main research questions on whether character-level mod-
els learn morphology and on whether we still need to explicitly model morphology.
Character-level models are effective because they can represent OOV words and or-
thographic regularities of words that are consistent with morphology. But they depend
on context to disambiguate words, and for some words this context is insufficient.
Case syncretism is a specific example that our analysis identified, but the main results
in Table 4.2 hint at the possibility that different phenomena are at play in different

languages.
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Figure 4.4: The importance of morphological features of the head for subject and object

predictions.

While our results show that prior knowledge of morphology is important, they also
show that it can be used in a targeted way: our character-level models improved
markedly when we augmented them only with case. This suggests a pragmatic re-
ality in the middle of the wide spectrum between pure machine learning from raw text
input and linguistically-intensive modeling: our new models don’t need all prior lin-
guistic knowledge, but they clearly benefit from some knowledge in addition to raw
input. While we used a data-driven analysis to identify case syncretism as a problem
for neural parsers, this result is consistent with previous linguistically-informed analy-
ses (Seeker and Kuhn, 2013; Tsarfaty et al., 2010). We conclude that neural models can
still benefit from linguistic analyses that target specific phenomena where annotation

is likely to be useful.
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Character-Level Models in

Cross-Lingual, Low-Resource NLP

In Chapter 1, we listed a claim from Lee et al. (2017) that character-level models
are useful for multilingual setting because they can easily identify morphemes that
are shared across languages with overlapping alphabets. Indeed, several studies have
shown that cross-lingual models that share character-level inputs tend to outperform
monolingual models (Kann et al., 2017; Cotterell and Heigold, 2017; de Lhoneux
et al., 2018), especially when they are trained on related languages. In Chapters 3
and 4, we have also seen the effectiveness of character-level models trained for mono-
lingual models. The main focus of this chapter is to investigate whether there is a
morphological effect when we train cross-lingual models that share character-level in-
puts. Cross-lingual models have proven to benefits low-resource NLP (Johnson et al.,
2017; Cotterell and Heigold, 2017), and in this study we will investigate the morpho-
logical effects of character-level models for cross-lingual, low-resource dependency
parsing. We experiment with parsing strategies which leverage both character-level in-
puts and linguistic annotations: (1) data augmentation, (2) cross-lingual training, and
(3) transliteration. We show how our strategies, particularly cross-lingual training im-
proves low-resource parsing. However, our analysis suggests that the improvements
are mostly come from the structural similarities between languages and we do not yet
find any strong evidence of morphological transfer in the cross-lingual training. This
study was conducted in collaboration with Yova Kementchedjhieva and Anders S¢-

gaard, which helped in the research discussions.

68
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5.1 Motivation

Large annotated treebanks are available for only a tiny fraction of the worlds languages,
and there is a wealth of literature on strategies for parsing with few resources (Hwa
et al., 2005; Zeman and Resnik, 2008; McDonald et al., 2011; Sggaard, 2011). A
popular approach is to train a parser on a related high-resource language and adapt it
to the low-resource language. This approach benefits from the availability of Universal
Dependencies (UD; Nivre et al., 2016), prompting substantial research (Tiedemann
and Agic, 2016; Agic, 2017; Rosa and Marecek, 2018), along with the VarDial and the
CoNLL UD shared tasks (Zampieri et al., 2017; Zeman et al., 2017b, 2018).

But low-resource parsing is still difficult. The organizers of the CoNLL 2018 UD
shared task (Zeman et al., 2018) report that, in general, results on the task’s nine low-
resource treebanks “are extremely low and the outputs are hardly useful for down-
stream applications. So if we want to build a parser in a language with few resources,
what can we do? To answer this question, we systematically compare several practical

strategies for low-resource parsing, asking:

1. What can we do with only a very small rarget treebank for a low-resource lan-

guage?

2. What can we do if we also have a source treebank for a related high-resource

language?
3. What if the source and target treebanks do not share a writing system?

Each of these scenarios requires different approaches. Data augmentation is appli-
cable in all scenarios, and has proven useful for low-resource NLP in general (Fadaee
et al., 2017; Bergmanis et al., 2017; Sahin and Steedman, 2018b). Transfer learning
via cross-lingual training is applicable in scenarios 2 and 3. Finally, transliteration

may be useful in scenario 3.

To keep our scenarios as realistic as possible, we assume that no taggers are available
since this would entail substantial annotation. Therefore, our neural parsing models
must learn to parse from words or characters—that is, they must be lexicalized—even
though there may be little shared vocabulary between source and target treebanks.
While this may intuitively seem to make cross-lingual training difficult, recent results
have shown that lexical parameter sharing on characters and words can in fact im-

prove cross-lingual parsing (de Lhoneux et al., 2018) and that in some circumstances,
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a lexicalized parser can outperform a delexicalized one, even in a low-resource setting
(Falenska and Cetinoglu, 2017). This assumption also allows us to test the claim from
Lee et al. (2017) that character-level models can identify morphemes that are shared

across different languages with overlapping alphabets.

We experiment on three language pairs from different language families, in which the
first of each is a genuinely low-resource language: North Sdmi and Finnish (Uralic);
Galician and Portuguese (Romance); and Kazakh and Turkish (Turkic), which have
different writing systems. To avoid optimistic evaluation, we extensively experiment
only with North Sdmi, which we also analyse to understand why our cross-lingual
training outperforms the other parsing strategies. We treat Galician and Kazakh as
truly held-out, and test only our best methods on these languages. Our results show

that:

1. When no source treebank is available, data augmentation is very helpful: depen-
dency tree morphing improves labeled attachment score (LAS) by as much as
9.3%. Our analysis suggests that syntactic rather than lexical variation is most

useful for data augmentation.

2. When a source treebank is available, cross-lingual parsing improves LAS up to
16.2%, but data augmentation still helps, by an additional 2.6%. Our analysis
suggests that improvements from cross-lingual parsing occur because the parser
learns syntactic regularities about word order, since it does not have access to

POS and has little reusable information about word forms.

3. If source and target treebanks have different writing systems, transliterating them

to a common orthography is very effective.

5.2 Methods

We describe three techniques for improving low-resource parsing: (1) two data aug-
mentation methods which have not been applied before for dependency parsing, (2)

cross-lingual training, and (3) transliteration.



Chapter 5. Character-Level Models in Cross-Lingual, Low-Resource NLP 71

5.2.1 Data augmentation by dependency tree morphing
(TreeMorph)

Sahin and Steedman (2018b) introduce two label-preserving operations to augment a
dataset for low-resource POS tagging. Their method assumes access to a dependency
tree, but they do not test it for dependency parsing, which we do here for the first time.
The first operation, cropping, removes some parts of a sentence to extract a smaller or
simpler, meaningful sentence. The second operation, rotation, keeps all the words in
the sentence but re-orders flexible tree fragments attached to the root verb. Here, the
flexible fragments are defined as subtrees, which are flexible to move around (verb,
subject, or object). Since flexibility depends on the morphological typology of the
language, rotation would make more sense for language with extensive marking system
which have no strict word order. For languages close to analytical typology such as
English or Mandarin, rotation would mostly introduce noise. Figure 5.1 demonstrate
how cropping and rotation are applied to a sentence 'She wrote me a letter’. Figure
5.1b crops the direct object, to focus on the subject and object. Figure 5.1c rotates the

indirect object ‘me’ and put it after the subject ‘she’.

To extract the flexible fragments, Sahin and Steedman (2018b) define the Label of
Interest (LOI) which consists of NSUBJ (nominal subject), OBJ (direct object), IOBJ
(indirect object), or OBL (oblique nominal) dependencies. To address cases when the
root verb is a phrase, the following relations are used: FIXED, FLAT, COP (copula), and
COMPOUND.

It is important to note that although both operations change the set of words or the
word order, they do not change the dependencies. Hence, they provide the model with
more input examples. While these may be awkward or ill-formed, the corresponding

analyses are still likely to be correct, and thus beneficial for learning.

Cropping and rotation might change the sentence-level meaning, but they also allow
the model to learn variations in argument structure (cropping) and variability in con-
stituent order (rotation), which may benefit languages with flexible word order and rich
morphology. Some of our low-resource languages have these properties—while North
Sami has a fixed word order (SVO), Galician and Kazakh have relatively free word
order. All the three languages use a case marking on nouns, which means that word

order may not be important for correct attachment.
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ROOT

OBJ
NSUBJ ‘ 10BJ DET

She wrote me a letter
PRON VERB PRON DET NOUN

(a) Original sentence.

ROOT

OBJ
NSUBJ m

She wrote a letter
PRON VERB DET NOUN

(b) Cropped sentence.

ROOT

NSUBJ oBJ
m DET

She me wrote a letter
PRON PRON VERB DET NOUN

(c) Rotated sentence.

Figure 5.1: Examples of dependency tree morphing operations.
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Both rotation and cropping can produce many trees. We use the default parameters

given in Sahin and Steedman (2018b).

5.2.2 Data augmentation by nonce sentence generation

(Nonce)

Our next data augmentation method is adapted from Gulordava et al. (2018). The

main idea is to create nonce sentences by replacing some of the words which have

the same syntactic annotations. For each training sentence, we replace each content

word—nouns, verbs, or adjective—with an alternative word having the same universal

POS and morphological features. To preserve dependencies, we also introduce an

additional constraint that the replacement word should also have the same dependency

label.! Specifically, for each content word, we first stochastically choose whether to

replace it; then, if we have chosen to replace it, we uniformly sample the replacement

word type meeting the corresponding constraints. For instance, given a sentence “He

I'The dependency label constraint is not used by Gulordava et al. (2018).
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borrowed a book from the library.", we can generate the following sentences:
(11) a. He bought a book from the shop .

b. He wore a umbrella from the library .

This generation method is only based on syntactic features (i.e., morphology and de-
pendency labels), so it sometimes produces nonsensical or ungrammatical sentences
like 11b. But since we only replace words if they have the same morphological fea-
tures and dependency label, this method preserves the original tree structures in the
treebank. Following (Gulordava et al., 2018), we generate five nonce sentences for

each original sentence.

5.2.3 Cross-lingual training

When a source treebank is available, model transfer is a viable option. We perform
model transfer by cross-lingual parser training: we first train on both source and target
treebanks to produce a single model, and then fine tune the model only on the target
treebank. In our preliminary experiments, the fine-tuning strategy gives us the best

results on development sets (Appendix A.2).

5.2.4 Transliteration

Two related languages might not share a writing system even when they belong to the
same family. We evaluate whether a simple transliteration would be helpful for cross-
lingual training in this case. In our study, the Turkish treebank is encoded in extended
Latin script while the Kazakh treebank is encoded in Cyrillic script. This difference
makes model transfer less useful, and means we might not be able to leverage lexical
similarities between the two languages. We pre-process both treebanks by transliterat-

ing them to the same “pivot” alphabet, basic Latin.?

The mapping from Turkish is straightforward. Its alphabet consists of 29 letters, 23 of
which are in basic Latin. The other six letters, i.e., ‘¢’,*’, ©’, ‘6°, ¢, ‘ii” are modifications
of their non-diacritic Latin counterparts, facilitating different pronunciations.> We map

these characters to the basic Latin characters, e.g., ‘¢’ to ‘c’. For Kazakh, we use

2 Another possible pivot is phonemes (Tsvetkov et al., 2016). We leave this as future work.
3https://www.omniglot.com/writing/turkish.htm
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a simple dictionary created by a Kazakh computational linguist to map each Cyrillic
letter to the basic Latin alphabet. The mapping from Kazakh Cyrilic into basic Latin
alphabet is provided in Appendix A.3.

5.3 Experimental Setup

5.3.1 Dependency Parsing Model

We use the Uppsala parser, a transition-based neural dependency parser (de Lhoneux
etal., 2017a,b; Kiperwasser and Goldberg, 2016). The parser uses an arc-hybrid transi-
tion system (Kuhlmann et al., 2011), extended with a static-dynamic oracle and SWAP

transition to allow non-projective dependency trees (Nivre, 2009).

Let w =wy,...,w),| be an input sentence of length lw| and let wy represent an artificial
ROOT token. We create a vector representation for each input token w; by concatenat-

ing (;) its word embedding, e, (w;) and its character-based word embedding, e.(w;):

X; = [ey(w;);ec(w;)] (5.1

Here, e.(w;) is the output of a character-level bidirectional LSTM (biLSTM) encoder
run over the characters of w; Ling et al. (2015a); this makes the model fully open-
vocabulary, since it can produce representations for any character sequence. We then

obtain a context-sensitive encoding h; using a word-level biLSTM encoder:
h; = [LSTMf(XO:i);LSTMb(X|w|:i)] (5.2)

We then create a configuration by concatenating the encoding of a fixed number of
words on the top of the stack and the beginning of the buffer. Given this configuration,
we predict a transition and its arc label using a multi layer perceptron (MLP). More

details of the core parser can be found in de Lhoneux et al. (2017a,b).

5.3.2 Parameter sharing

To train cross-lingual models, we use the strategy of de Lhoneux et al. (2018) for
parameter sharing, which uses soft sharing for word and character parameters, and hard

sharing for the MLP parameters. Soft parameter sharing uses a language embedding,
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which, in theory, learns what parameters to share between the two languages. Let ¢;
be an embedding of character c; in a token w; from the treebank of language k, and
let I be the language embedding. For sharing on characters, we concatenate character
and language embedding: [c;;l;] for input to the character-level biLSTM. Similarly,
for input to the word-level biLSTM, we concatenate the language embedding to the

word embedding, modifying Eq. 5.1 to

X; = [e,(wi);ec(wi); 1] (5.3)

We use the default hyperparameters of de Lhoneux et al. (2018) in our experiments.
We fine-tune each model by training it further only on the target treebank (Shi et al.,
2016). We use early stopping based on Label Attachment Score (LAS) on development

set.

5.3.3 Datasets

We use Universal Dependencies (UD) treebanks version 2.2 Nivre et al. (2018). Our
target treebanks are North Sdmi Giella (Sheyanova and Tyers, 2017), Galician TreeGal,
and Kazakh KTB (Tyers and Washington, 2015; Makazhanov et al., 2015). None of
these treebanks have a development set, so we generate new train/dev splits by 50:50
(Table 5.1). Having large development sets allow us to perform better analysis for this
study. We use Finish TDT, Portuguese Bosque (Rademaker et al., 2017), and Turkish
IMST for our source treebanks. Similar to our preprocessing steps in Chapter 4, we
ignore multiword tokens and empty nodes (for ellipsis) in the treebanks, and use gold
sentence segmentation and tokenization provided in UD. Table 5.1 shows the statistics

of our datasets.

5.4 Parsing North Sami

North Sami is our largest low-resource treebank, so we use it for a full evaluation and
analysis of different strategies before testing on the other languages. To understand the
effect of target treebank size, we generate three datasets with different training sizes:
Tio (~10%), Is9 (~50%), and T109 (100%). Table 5.2 reports the number of training

sentences after we augment the data using methods described in Section 5.2.
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Language train dev.  test

Finnish 14981 1875 1555
North Sami 1128 1129 865

Portuguese 8329 560 477

Galician 300 300 400
Turkish 3685 975 975
Kazakh 15 16 1047

Table 5.1: Train/dev split used for each treebank.

original +TreeMorph +Nonce

Ti00 1128 7636 4934
s 564 3838 2700
Tio 141 854 661

Table 5.2: Number of North Sami training sentences.

We employ the following baselines: unsupervised left-branching and right-branching,
word-level only model, monolingual, and cross-lingual models, all without data aug-
mentation. We use unsupervised and word-level only baselines to test whether character-
level features are still useful in low-resource settings. The monolingual model acts as
a simple baseline, to resemble a situation when the target treebank does not have any
source treebank (i.e., no available treebanks from related languages). The cross-lingual

model serves as a strong baseline, simulating a case when there is a source treebank.

Table 5.3 shows our results. Unsupervised models obtain very poor performance, with
17.5% and 24.2% UAS for right-branching and left-branching, respectively. Models
with word-level inputs outperform the unsupervised models, but consistently worse
than models with word and character-level inputs. This result suggests that character-
level features are still useful in addition to word-level information, showing their po-
tential to handle rare and OOV words, which is also related to morphology. Next,
we discuss our results based on our motivating scenarios of low-resource dependency

parsing.
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Tio Ts0 Ti00
Input Model UAS LAS UAS LAS UAS LAS
unsupervised right-branching 17.5 - 17.5 - 17.5 -
left-branching 242 - 24.2 - 242 -
word monolingual 284 145 489 359 577 465
word+char monolingual 355 185 545 425 639 533
monolingual+TreeMorph 41.0 27.1 569 46.6 654 56.0
monolingual+Nonce 429 27.8 569 46.5 654 563
word multilingual 419 283 543 427 613 512
word+char cross-lingual 472 347 61.0 51.7 69.1 613
cross-lingual+TreeMorph 48.9 373 60.2 52.0 685 60.9
cross-lingual+Nonce 475 354 60.1 52.0 69.1 61.7

Table 5.3: Parsing results on North Sami on development data.

Scenario 1: we only have a very small target treebank. In the monolingual ex-
periments, we observe that both dependency tree morphing (TREEMORPH) and nonce
sentence generation (NONCE) improve performance, indicating the strong benefits of
data augmentation when there is no other resources available except the target tree-
bank itself. In particular, when the number of training data is the lowest (Zjo), data

augmentations improves performance up to 9.3% LAS.

Scenario 2: a source treebank is available. We see that the cross-lingual training
(cross-base) performs better than monolingual models even with augmentation. For
the 7y setting, cross-base achieves almost twice as much as the monolingual baseline
(mono-base). The benefits of data augmentation are less evident in the cross-lingual
setting, but in the 7j( scenario, data augmentation still clearly helps. Overall, cross-

lingual combined with TREEMORPH yields the best result.
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5.4.1 What is learned from Finnish?

Why do cross-lingual training and data augmentation help? To put this question in
context, we first consider their relationship. Finnish and North Sdmi are mutually un-
intelligible, but they are typologically similar: of the 49 (mostly syntactic) linguistic
features annotated for North Sdmi in the Word Atlas of Languages (WALS; Dryer and
Haspelmath, 2013), Finnish shares the same values for 42 of them.* Despite this and
their phylogenetic and geographical relatedness, they share very little vocabulary: only
6.5% of North Sami tokens appear in Finnish data, and these words are either proper
nouns or closed class words such as pronouns or conjunctions. However, both lan-

guages do share many character-trigrams (72.5%, token-level), especially on suffixes.

Now we turn to an analysis of the 7 data setting, where we see the largest gains for

all methods.

5.4.2 Analysis of data augmentation

For dependency parsing, POS features are important because they can provide strong
signals whether there exists dependency between two words in a given sentence. For
example, subject and object dependencies often occur between a NOUN and a VERB,
as can be seen in Fig. 5.1a. We investigate the extent to which data augmentation is
useful for learning POS features, using diagnostic classifiers (Veldhoen et al., 2016b;
Adi et al., 2017; Shi et al., 2016) to probe our model representations. Our central
question is: do the models learn useful representations of POS, despite having no

direct access to it? And if so, is this helped by data augmentation?

After training each model, we freeze the parameters and generate context-dependent
representations (i.e., the output of word-level biLSTM, h; in Eq. 5.2), for the train-
ing and development data. We then train a feed-forward neural network classifier to
predict the POS tag of each word, using only the representation as input. To filter out
the effect of cross-lingual training, we only analyze representations trained using the
monolingual models. Our training and development data consists of 6321 and 7710

tokens, respectively. The percentage of OOV tokens is 40.5%.

“There are 192 linguistic features in WALS, but only 49 are defined for North Sami. These features
are mostly syntactic, annotated within different areas such as morphology, phonology, nominal and

verbal categories, and word order.
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%diff. with
POS %dev  baseline

+TreeMorph +Nonce

INTJ 0.1 0.0 20.0 20.0
PART 1.5 70.1 7.7 0.8
NUM 1.9 19.2 15.1 -4.1
ADP 1.9 15.7 24.5 19.7
SCONJ 2.4 57.8 5.9 7.6
AUX 3.2 26.3 27.2 -4.9
CCONJ 3.4 91.3 -0.8 4.2
PROPN 4.7 5.9 5.9 -5.9
ADJ 6.5 12.7 3.8 0.2
ADV 9.0 42.9 11.8 11.5
PRON 13.4 63.2 54 -2.7
VERB 25.7 72.4 -6.2 -4.5
NOUN 26.4 67.0 8.6 13.2

Table 5.4: Results for the monolingual POS predictions, ordered by the frequency of
each tag in the dev split (%dev). %diff shows the difference between each augmentation

method and monolingual models.

Table 5.4 reports the POS prediction accuracy. We observe that representations gen-
erated with monolingual TREEMORPH seem to learn better POS, for most of the tags.
On the other hand, representations generated with monolingual NONCE sometimes
produce lower accuracy on some tags; only on nouns the accuracy is better than mono-
lingual TREEMORPH. We hypothesize that this is because NONCE sometimes gen-
erates meaningless sentences which confuse the model. In parsing this effect is less
apparent, mainly because monolingual NONCE has the poorest POS representation for

infrequent tags (%dev), and better representation of nouns.

5.4.3 Effects of cross-lingual training

Next, we analyze the effect of cross-lingual training by comparing the monolingual

baseline to the cross-lingual model with TREEMORPH.
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Top nearest Finnish words

North Sami char-level word-level
borrat (VERB; eat) herrat (NOUN; gentleman)  kdydd (VERB; g0)
kerrat (NOUN; time) otan (VERB; take)
naurat (VERB; laugh) sain (VERB; get)
veahki (NOUN; help) nuuhki (VERB; sniff) tyhjiksi (ADJ; empty)
viki (NOUN; power) Jjohonki (PRON; something)
avarsi (VERB; expand) ldhtokohdaksi (NOUN; basis)
divrras (ADJ; expensive) harras (ADJ; devout) vdlttimdtontd (ADJ; essential)
reipas (ADJ; brave) mahdollista (ADJ; possible)

sarjaporras (NOUN; series)  kilpailukykyisempi (ADT; competitive)

Table 5.5: Most similar Finnish words for each North Sami word based on cosine simi-

larity.

Cross-lingual representations. The fact that cross-lingual model improves parsing
performance is interesting, since Finnish and North Sdmi have so little common vo-
cabulary. What linguistic knowledge is transferred through cross-lingual training? We
analyze whether words with the same POS category from the source and target tree-
banks have similar representations. To do this, we analyze the head predictions, and
collect North Sdmi tokens for which only the cross-lingual model correctly predicts the
headword.” For these words, we compare token-level representations of North Sami

development data to Finnish training data.

We ask the following questions: Given the representation of a North Sdmi word, what
is the Finnish word with the most similar representation? Do they share the same POS
category? Information other than POS may very well be captured, but we expect that
the representations will reflect similar POS since POS is highly revelant to parsing. We

use cosine distance to measure similarity.

We look at four categories for which cross-lingual training substantially improves re-
sults on the development set: adjectives, nouns, pronouns, and verbs. We analyze

representations generated by two layers of the model in §5.3.1: (1) the output of

> Another possible way is to look at the label predictions. But since the monolingual baseline LAS

is very low, we focus on the unlabeled attachment prediction since it is more accurate.
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POS char-level (%) word-level (%)

ADJ 12.1 37.1
NOUN 55.8 63.5
PRON 12.9 68.0
VERB 34.2 69.0

Table 5.6: # of North Sami tokens for which the most similar Finnish word has the same
POS.

character-level biLSTM (char-level), e.(w;) and (2) the output of word-level biLSTM
(word-level), i.e., h; in Eq. 5.2.

Table 5.5 shows examples of top three closest Finnish training words for a given North
Sami word. We observe that character-level representation focuses on orthographic
similarity of suffixes, rather than POS. On the word-level representations, we find
more cases when the top closest Finnish words have the same POS with the North
Sami word. In fact, when we compare the most similar Finnish word (Table 5.6) quan-
titatively, we find that the word-level representations of North Sdmi are often similar to
Finnish word with the same POS; the same trend does not hold for character-level rep-
resentations. Since very few word tokens are shared, this suggests that improvements
in cross-lingual training might simply be due to syntactic (i.e. word order) similarities
between the two languages, captured in the dynamics of the biLSTM encoder—despite
the fact that it knows very little about the North Sdmi tokens themselves. The word-
level representation has advantage over the char-level representation in the way that it
has access to contextual information like word order, and it has knowledge about the

other words in the sentence.

Head and label prediction. Lastly, we analyze the parsing performance of the mono-
lingual compared to the cross-lingual models. Looking at the produced parse trees, one
striking difference is that monolingual model sometimes predicts a “rootless" tree, i.e.,
it fails to label any word in the sentence with a root label. In cases where the mono-
lingual model predicts wrong parses and the cross-lingual model predicts the correct

ones, we find that the “rootless" trees are predicted more than 50% of the time.® Mean-

The parsing model enforces the constraint that every tree should have a head, i.e., an arc pointing

from a dummy root to a node in the tree. It does not, however, enforce that this arc be labeled roor—the
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Figure 5.2: Differences between cross-lingual vs. monolingual confusion matrices. The
last column represents cases of incorrect heads and the other columns represent cases
for correct heads, i.e., each row summing to 100%. Blue cells show higher cross-lingual

values and red cells show higher monolingual values.

while, the cross-lingual model always predicts a root for every sentence, even when the
predicted head index is incorrect (i.e., root must always be at index 0). This pattern
suggests that more training examples at least helps the model to learn structural prop-

erties of a well-formed tree.

The ability of a parser to predict labels is contingent on its ability to predict heads,
so we focus our analysis on two cases. How do monolingual and cross-lingual head
prediction compare? And if both models predict the correct head, how do they compare

on label prediction?

Figure 5.2 shows the difference between two confusion matrices: one for cross-lingual
and one for monolingual models. The last column shows cases of incorrect heads and
the other columns show label predictions when the heads are correct, i.e., each row
summing to 100%. Here, blue cells highlight confusions that are more common for the
cross-lingual model, while red cells highlight those more common for the monolingual
model. For head prediction (last column), we observe that monolingual model makes

higher errors especially for nominals and modifier words. In cases when both both

model must learn the labeling.
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CROSS-LINGUAL

Language zero-shot +fastText +TreeMorph
Galician 51.9 72.8 71.0
Kazakh 12.5 27.7 284
Kazakh (translit.) 21.2 31.1 36.7

Table 5.7: LAS results on development sets. zero-shot denotes results where we

predict using model trained only on the source treebank.

CROSS-LINGUAL

baseline ‘ best system ‘ +fastText +TreeMorph ‘ rank

Galician 66.16 74.25 70.46 69.21 10/27
Kazakh (translit.)  24.21 31.93 25.28 28.23 2/27

Table 5.8: Comparison to CoNLL 2018 UD Shared Task on test sets. best system is
the state-of-the-art model for each treebank: UDPipe-Future (Straka, 2018) for Galician
and Uppsala (Smith et al., 2018a) for Kazakh. rank shows our best model position in

the shared task ranking for each treebank.

models predict the correct heads, we observe that cross-lingual training gives further
improvements in predicting most of the labels. In particular, regarding the “rootless"
trees discussed before, we see evidence that cross-lingual training helps in predicting

the correct root index, and the correct root label.

5.5 Parsing truly low-resource languages

Now we turn to two truly low-resource treebanks: Galician and Kazakh. These tree-
banks are most analogous to the North Sami 7 setting and therefore we apply the best
approach, cross-lingual training with TREEMORPH augmentation. Table 5.1 provides
the statistics of the augmented data. For Galician, we use the Portuguese treebank as
source while for Kazakh we use Turkish. Portuguese and Galician have high vocabu-
lary overlap; 62.9% of Galician tokens appear in Portuguese data, and they share while
for Turkish and Kazakh they do not share vocabulary since they use different writing

systems. However, after transliterating them into the same basic Latin alphabet, we
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observe that 9.5% of Kazakh tokens appear in the Turkish data. Both language pairs
also share many (token-level) character trigrams: 96.0% for Galician-Portuguese and
66.3% for transliterated Kazakh-Turkish.

To compare our best approach, we create two baselines: (1) a pre-trained parsing model
of the source treebank (zero-shot learning), and (2) a cross-lingual model initialized
with monolingual pre-trained word embeddings. The first serves as a weak baseline, in
a case where training on the target treebank is not possible (e.g., Kazakh only has 15
sentences for training). The latter serves as a strong baseline, in a case when we have

access to pre-trained word embeddings, for the source and/or the target languages.

We treat a pre-trained word embedding as an external embedding, and concatenate it

with the other representations, i.e., modifying Eq. 5.3 to:

X; = ey (wi)sep(wi)rec(wi); 1] (54

where e, (w;) represents a pre-trained word embedding of w;, which we update during
training. We use the pre-trained monolingual fastText embeddings Bojanowski et al.
(2017).7 We concatenate the source and target pre-trained word embeddings.® For our
experiments with transliteration (§5.2.4), we transliterate the entries of both the source

and the target pre-trained word embeddings.

5.5.1 Experiment results

Table 5.7 reports the LAS performance on the development sets. TREEMORPH aug-
mentation improves performance over the zero-shot baseline and achieves comparable

or better LAS with a cross-lingual model trained with pre-trained word embeddings.

Next, we look at the effects of transliteration (see Kazakh vs Kazakh (translit.) in
Table 5.7). In the zero-shot experiments, simply mapping both Turkish and Kazakh
characters to the Latin alphabet improves accuracy from 12.5 to 21.2 LAS. Cross-

lingual training with TREEMORPH further improves performance to 36.7 LAS.

"The embeddings are available at https:/fasttext.cc/docs/en/pretrained-vectors.html.
81f a word occurs in both source and target, we use the word embedding of the source language.
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5.5.2 Comparison with CoNLL 2018

To see how our best approach (i.e., cross-lingual model with TREEMORPH augmen-
tation) compares with the current state-of-the-art models, we compare it to the recent
results from CoNLL 2018 shared task. Training state-the-art models may require lots
of engineering and data resources. Our goal, however, is not to achieve the best perfor-
mance, but rather to systematically investigate how far simple approaches can take us.
We report performance of the following: (1) the shared task baseline model (UDPipe
v1.2; Straka and Strakova, 2017) and (2) the best system for each treebank, (3) our best

approach, and (4) a cross-lingual model with fastText embeddings.

Table 5.8 presents the overall comparison on the test sets. For each treebank, we apply
the same sentence segmentation and tokenization used by each best system.” We see
that our approach outperforms the baseline models on both languages. For Kazakh,
our model (with transliteration) achieves a competitive LAS (28.23), which would be

the second position in the shared task ranking.

5.6 Conclusions

In this chapter, we have presented various strategies for low-resource dependency pars-
ing. We focus on extremely low-resource scenarios where external data or taggers are

hardly available.

Our strategies make use of two kind of information which are available on any tree-
banks: lexical features such as words or characters and linguistic annotations. We
demonstrate that in the extremely low-resource setting, data augmentation improves
parsing performance both in monolingual and cross-lingual settings. We also show
that transfer learning is possible with lexicalized parsers, using words and characters
information. In addition, we discover that transfer learning between two languages
with different writing systems is possible, and future work should consider translitera-

tion for other language pairs.

While we have not exhausted all the possible techniques (e.g., use of external resources

YUD shared task only provides unsegmented (i.e., sentence-level and token-level) raw test data.
However, participants were allowed to use predicted segmentation and tokenization provided by the

baseline UDPipe model.
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(Rasooli and Collins, 2017; Rosa and Marecek, 2018), predicted POS (Ammar et al.,
2016), multiple source treebanks (Lim et al., 2018; Stymne et al., 2018)), we show that
simple methods which leverage the linguistic annotations in the treebank can improve
low-resource parsing. A possible future work would be to explore different augmenta-
tion methods, such as the use of synthetic source treebanks (Wang and Eisner, 2018) or
contextualized language model (Peters et al., 2018; Howard and Ruder, 2018; Devlin

et al., 2019) for scoring the augmented data (e.g., using perplexity).

Chapters 3 and 4 of this thesis were concerned about character-level models and their
relations to morphology, in comparison to the word lookup model and models with ac-
cess to gold morphological annotations. We conclude that although these models are
more effective than the traditional word lookup model, they can still benefit from lin-
guistic analyses. Both studies focused on settings when we have arguably large amount
of data, where we can conveniently train monolingual model for each language. In this
chapter, we looked at a different setting, where there is only limited amount of data.
We tested how far character-level models can improve parsing both in monolingual
and cross-lingual settings. Our results show that cross-lingual training are very effec-
tive for improving low-resource parsing and this is because of the syntactic similarities
between related languages that are captured by the neural networks. We have not yet
observed any evidence on morphological transfer, but our qualitative analysis hints that

this is possible when the two languages use similar affixes to mark morphology.

Understanding what kind of morphological information are transferred across lan-
guages is non-trivial. Unlike POS or dependency labels, morphology typically requires
more fine-grained annotations which can be different even between two closely related
languages. For example, according to UD annotations, Finnish has 15 possible values
for case, while North Sdmi has 8 possible values. Sometimes, there can also be seman-
tic differences which tied to the morphological feature. For example, ‘car’ in Spanish
(el coche) is marked as masculine, while in French (la voiture) it is marked as femi-
nine. Recently, there has been an effort in building a universal schema for morphology,
called Universal Morphological Feature Schema (Unimorph; Sylak-Glassman, 2016)
to act as an interlingua for inflectional morphology. Exploiting this resource would be

another interesting future work to investigate morphological transfer across languages.



Chapter 6

Conclusions

People continually use their morphological knowledge to understand, memorize, and
apply new words in their language. In Chapter 1 we mentioned how we expect NLP
systems to have the same capabilities so that they can process words and understand
human languages. Recent progress on computational NLP models using neural net-
works provides opportunities to build such systems. Instead of modeling words as
atomic units, we can now model each word as a function of its subword units, such
as characters. Humans process words and learn the morphology without explicit guid-
ance, so we ask, can neural models also do the same thing? In other words, does
NLP still benefit from prior knowledge of morphology or can they be replaced entirely
by models of subword units? This thesis aims to understand whether subword unit

models, specifically character-level models, learn morphology.

In Chapter 2, we discussed how languages vary in terms of their morphological pro-
cesses, and one of our main goals is to understand how current subword unit models
interact with the morphological typology. To do so, in this thesis, we performed our

study on a total of 18 typologically diverse languages.

In Chapter 3, we started by presenting a systematic comparison of subword unit mod-
els, varying (1) the choice of subword unit, (2) the compositional function, and (3)
their interaction with language typology. We established character-level models (either
composed by biLSTM or CNN) as strong baselines for learning morphology. To under-
stand whether our strong baselines capture morphology, we compared character-level
models to an oracle with access to morphological analysis. We showed that character-

level models do not yet match the oracle performance, indicating that prior knowledge
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of morphology is still important for neural models. This comparison between subword
unit models and oracle has not been explored in the past, and we argue that this is im-
portant in order to answer whether prior knowledge about morphology is still important

for our neural models.

If character-level models performance do not yet match the oracle performance, what
do they actually learn about morphology? We explored this question in Chapter 4. We
diagnosed both character-level and oracle models performance on dependency parsing;
a task which benefits substantially from morphological knowledge. We showed case
syncretism as a specific phenomena that is not well-captured by the character-level
models, but our results hint at the possibility that different linguistic phenomena are at
play in different languages. We then demonstrated how a targeted, explicit modeling
of morphology can be useful in such cases. This suggests that our neural models do
not need all prior linguistic knowledge, but they clearly benefit from some knowledge

in addition to raw text input.

The claim of Lee et al. (2017) that we listed in Chapter 1 states that character-level
models are useful in a multilingual setting because they can easily identify morphemes
that are shared across languages with overlapping alphabets. We tested this claim
in Chapter 5. We applied character-level models for low-resource dependency pars-
ing, an applicable situation where multilingual models would be useful. We explored
strategies which exploit both character-level input and linguistic annotations: (1) data
augmentation, (2) cross-lingual training, and (3) transliteration. Our experiments on
North Sami, Galician, and Kazakh demonstrated that all of the three strategies improve
low-resource parsing. Our analysis on cross-lingual representation suggests that cross-
lingual training helps because related languages share similar syntactic structure (word
order) but we did not yet find any clear evidence of morphological transfer across lan-
guages. We also showed how transliteration into a shared orthographic spaces is very

helpful when two related languages use different writing systems.

6.1 Future Work

There are many directions for future work. In this thesis, we focused on learning
morphology using subword level input. In practice, we would also like to be able

to generate well-formed, grammatical text since this is crucial for applications like
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machine translation, question answering, or summarization. Character-level models
are effective for representing input words, but are they also effective for generating
text? Many existing models apply subword level input but only a few has started to
explore them for text generation (Ling et al., 2015b; Lee et al., 2017; Matthews et al.,
2018). Future work might explore the effects of morphological typology and different

data settings (size or domains) for generating text at the subword level.

This thesis uses internal representations to analyze neural models, but there are many
other interesting avenues to understand the morphological learning of neural models.
For example, we can track the RNN/LSTM cell dynamics of the neural models to un-
derstand how neural models acquire or learn a specific linguistic property such as POS
or morphological feature (Kementchedjhieva and Lopez, 2018), or a linguistic phe-
nomenon like subject-verb agreement (Linzen et al., 2016; Lakretz et al., 2019). Since
languages vary in their morphological processes, it would also be useful to understand
which features or phenomena are difficult to learn by the neural models and if inclusion
of linguistic information can help the learning process. Understanding what neural net-
works learn about language (including morphology) has also become of great interest
in the NLP community (Linzen et al., 2018, 2019).

We argue that prior knowledge of morphology is still important for neural models. In
Chapter 4 we demonstrated this using two simple approaches of multi-task learning and
predicted morphological analyses as additional input features. However, it is desirable
to have a model that can exploit annotations when they are available and predict them
when they are not available (Zhou and Neubig, 2017). We can also explore some
variants of multi-task learning which (1) use the predicted features distributions of
the auxiliary task and use it for the target task (Anastasopoulos and Chiang, 2018) or
(2) learn strategies to first learn the important morphological features before gradually

focus on the target NLP task (Kiperwasser and Ballesteros, 2018).

In Chapter 4, we showed how contextual information might be useful for learning
morphological features. Most recently, several models have been proposed for learning
contextual word representations (Peters et al., 2018; Devlin et al., 2019). These models
apply multiple layers in their network to learn some linguistic abstraction starting from
the low-level features such as POS to more abstract features like semantics or topics.
Do these models learn better morphology than our simple language model? There are
still many open questions regarding what these models learn about languages and how

they interact with typologically diverse languages. Answering these questions would
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also be an interesting direction for future research.

Neural network based models have gained huge interests from the NLP community in
the past few years due to their impressive performance on various benchmarks. We
position our work on the side which argues that it is also important to be able to an-
alyze what the representations that neural NLP models actually learn about language,
and to gain insights on how to improve them. In this thesis, we specifically looked at
morphology, but there are way many more aspects of languages that remain to be inves-
tigated if we want to achieve our ultimate goal in building systems that can understand
human languages. We hope this thesis can provide insights and research directions for

related future work.



Appendix A

Additional Materials

A.1 Universal Inflectional Features

Our oracle models in Chapter 4 use universal morphological features defined in the UD
annotation guidelines. In our experiments, we only use the inflectional features (Table
A.1), and in practice the values of each feature vary across languages. More details

explanation can be found in Universal Dependencies guidelines.!

Category | Inflectional Feature

Nominal | Gender, Animacy, NounClass, Number, Case, Definite, Degree
Verbal VerbForm, Mood, Tense, Aspect, Voice, Evident, Polarity

Person, Polite, Clusivity

Table A.1: Universal inflectional features defined in UD version 2.0. The labels nominal

and verbal are used as approximate categories only.

Thttp://universaldependencies.org/u/feat/index.html
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A.2 Effects of Fine-Tuning for Cross-Lingual Training

For our cross-lingual experiments in Chapter 5, we observe that fine-tuning on the tar-
get treebank always improves parsing performance. Table A.2 reports LAS for cross-

lingual models with and without fine-tuning.

size | mono-base | cross-base +Morph +Nonce

Ti00 533 579 (+4.6) 59.5(4+6.2) 59.3 (+6.0)
Tso 42.5 483 (+5.8) 49.8(+7.3) 50.1(+7.6)
Tio 18.5 29.8 (+11.3) 349 (+16.4) 34.8(+16.3)

J with fine tuning (FT) |

Ti00 533 61.3(+8.0) 609 (+7.6) 61.7 (+8.4)
s 42.5 52.0(49.5) 51.7(4#9.2)  52.0 (4+9.5)
Tio 18.5 34.7 (+16.2) 37.3(+18.8) 35.4(+16.9)

Table A.2: Effects of fine-tuning on North Sami development data, measured in LAS.
mono-base and cross-base are models without data augmentation. % improvements

over mono-base shown in parentheses.
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A.3 Cyrilic to Latin alphabet mapping

Cyrillic Latin | Cyrillic Latin | Cyrillic Latin

A A (o} F K k
9] A X H b 1
b B h H M m
B A% 11 Ts H n
r G 9 Ch H n
3 G I Sh o o
pi | D T Sh e 0
E E b ’ II p
E E bI Y ) r
2K J I I c S
3 Z b ’ T t
n I S E y u
1 I IO Ju Y u
K K b3l Ja Y u
K K a a fen) f
JI L ) a X h
M M 6 b h h
H N B v 1T ts
H N r g q ch
0O 0O F g I sh
(S] O I d I, sh
II P e e b ’
P R é e Bl y
C S X j i i
T T 3 Z b ’
Yy U u i 3 e
Y U i i 0 ju
Y U K k s ja

Figure A.1: The mapping from Cyrillic to Latin alphabet used in Chapter 5.
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