31 research outputs found

    Intermediate number of major histocompatibility complex class IIB length variants relates to enlarged perivisceral fat deposits in the blunt-head cichlid Tropheus moorii

    No full text
    Studying the genetic basis of host-parasite interactions represents an outstanding opportunity to observe eco-evolutionary processes. Established candidates for such studies in vertebrates are immunogenes of the major histocompatibility complex (MHC). The MHC has been reported to reach high intra- and interindividual diversity, and a diverse MHC might be advantageous when facing infections from multiple parasites. However, other studies indicated that individuals with an intermediate number of MHC alleles are less infected with parasites or have other fitness advantages. In this study, we assessed the optimal number of MHC alleles in the blunt-head cichlid Tropheus moorii from Lake Tanganyika. We investigated the influence of the interindividual variation in number of MHC length variants on parasite infection and body condition, measured by the amount of perivisceral fat reserves. Surprisingly, there was no correlation between parasite infection and number of MHC length variants or perivisceral fat deposits. However, the individual number of MHC length variants significantly correlated with the amount of perivisceral fat deposits in males, suggesting that male individuals with an intermediate number of alleles might be able to use their fat reserves more efficiently

    A structural and functional comparison of nematode and crustacean PDH-like sequences

    No full text
    The elucidation of the whole genome of the nematode Caenorhabditis elegans allowed for the identification of ortholog genes belonging to the pigment dispersing hormone/factor (PDH/PDF) peptide family. Members of this peptide family are known from crustaceans, insects and nematodes and seem to exist exclusively in ecdysozoans where they play a role in different processes, ranging from the dispersion of integumental and eye (retinal) pigments in decapod crustaceans to circadian rhythms in insects and locomotion in C. elegans. Two pdf genes (pdf-1 and pdf-2) encoding three different peptides: PDF-1a, PDF-1b and PDF-2 have been identified in C. elegans. These three C. elegans PDH-like peptides are similar but not identical in primary structure to PDHs from decapod crustaceans. We investigate whether this divergence has an influence on the pigment dispersing function of the peptides in a decapod crustacean, namely the shrimp Palaemon pacificus. We show that C. elegans PDF-1a and b peptides display cross-functional activity by dispersing pigments in the epithelium of P. pacificus at physiological doses. Moreover, by means of a comparative amino acid sequence analysis of nematode and crustacean PDH-like peptides, we can pinpoint several potentially important residues for eliciting pigment dispersing activity in decapod crustaceans. Although there is no sequence information on a receptor for PDH in decapod crustaceans, we postulate that there is general conservation of the PDH/PDF signaling system based on structural similarities of precursor proteins and receptors (including those from a branchiopod crustacean and from C. elegans).status: publishe
    corecore