169 research outputs found

    Quiet-time electron increases, a measure of conditions in the outer solar system

    Get PDF
    One possible explanation for quiet-time electron increases, increases in the intensity of 3-12 MeV interplanetary electrons that have been reported by McDonald, Cline and Simnett, is discussed. It is argued that the electrons in quiet-time increases are galactic in origin, but that the observed increases are not the result of any variation in the modulation of these particles in the inner solar system. It is suggested instead that quiet-time increases may occur when more electrons than normal penetrate a modulating region that lies far beyond the orbit of earth. The number of electrons penetrating this region may increase when field lines that have experienced an unusually large random walk in the photosphere are carried by the solar wind out to the region. As evidence for this increased random walk, it is shown that five solar rotations before most of the quiet-time increases there is an extended period when the amplitude of the diurnal anisotropy, as is measured by the Deep River neutron monitor, is relatively low. Five rotations delay time implies that the proposed modulating region lies at approximately 30 AU from the Sun, assuming that the average solar wind speed is constant over this distance at approximately 400 km/sec

    Stellar populations in the Galactic bulge

    Full text link
    AIMS:The aim of this paper is to study the characteristics of the stellar populations and the metallicity distribution in the Galactic bulge. We study the entire stellar population, but also retrieve information using only the red clump stars. METHODS: To study the characteristics of the stellar populations and the metallicity distribution in the Galactic bulge, we compared the output of the galaxy model TRILEGAL, which implements the Binney et al. (1997) bulge model, with observations from 2MASS and OGLE-II. A minimisation procedure has been set up to retrieve the best fitting model with different stellar populations and metallicity distributions. RESULTS: Using the TRILEGAL code we find that the best model resembling the characteristics of the Galactic bulge is a model with the distance to the Galactic centre R0=8.7±0.430.57R_0 = 8.7\pm^{0.57}_{0.43} kpc, the major axis ratios of the bar 1:η:ζ=1:0.68±0.190.05:0.31±0.040.061:\eta:\zeta = 1 : 0.68\pm_{0.19}^{0.05} : 0.31\pm_{0.04}^{0.06}, and the angle between the Sun-centre line and the bar ϕ=15deg±12.713.3\phi = 15\deg\pm_{12.7}^{13.3}. Using these parameters the best model is found for a burst of 8 Gyr, although it is almost indistinguishable from models with ages of 9 and 10 Gyr. The metallicity distribution found is consistent with metallicity distributions in the literature based on spectroscopic results.Comment: A&A accepte

    A catalogue of solar cosmic ray events: IMPS 4 and 5, May 1967 - December 1972

    Get PDF
    This catalogue of solar cosmic ray events has been prepared for the use of solar physicists and other interested scientists. It contains some 185 solar particle events detected by the Goddard Space Flight Center Cosmic Ray Experiments on IMP's IV and V (Explorer 34 and 41) for the period May 1967 - December 1972. The data is presented in the form of hourly averages for three proton energy intervals - 0.9 - 1.6 MeV; 6 - 20 MeV and 20 - 80 MeV. In addition the time histories of .5 - 1.1 MeV electrons are shown on a separate scale. To assist in the identification of related solar events, the onset time of the electron event is indicated. The details of the instrumentation and detector techniques are described. Further descriptions of data reduction procedure and on the time-history plots are given

    Helios 1 energetic particle observations of the solar gamma ray flare events of 7, 21 June 1980 and 3 June 1982

    Get PDF
    The observed characteristics of the energetic particles associated with the solar gamma-ray events of 3, 21 June 1980 and 3 June 1982 differ in several important aspects from the typical solar particle increases. They have flat energy spectra, are electron rich and have small precursors increases that begin some hours before the impulsive flare increase

    Energetic particle observations of the solar-gamma ray/neutron flare events of 3 Jun 1982 and 21 June 1980 isotopic and chemical composition

    Get PDF
    Studies of the charge composition of two solar gamma ray/neutron-flare events reveal a striking enrichment of iron relative to oxygen with a smaller enrichment of intermediate nuclei. He/O is also enhanced and moderate amounts of He-3 are detected but there is no evidence for H-2 or H-3

    The variation of solar proton energy spectra size distribution with heliolongitude

    Get PDF
    A statistical study of the initial phases of 185 solar particle events was carried out using the data from cosmic ray experiments on IMP 4 and IMP 5. Special emphasis was placed on the identification of the associated solar flare, as the parent flare can be determined for 68% of the events. It appears probable that most of the unidentified increases occur on the non-visible disc of the sun. The existence of a 'preferred-connection' longitude between 20 W and 80 W was established by examining the heliolongitude of all the flare associated events. It is demonstrated that the energy spectra determined at the time of maximum particle in the 20 to 80 MeV or 4 to 20 Mev interval range give results identical to that obtained by the 'distance-travelled' method

    Observations of galactic cosmic ray energy spectra between 1 and 9 AU

    Get PDF
    The variation of the 5 to 500 MeV/nuc cosmic ray helium component was studied between 1 and 9 A.U. using essentially identical detector systems on Pioneer 10 and 11 and Helios I. Between 100 and 200 MeV/nuc a radial gradient of 3.3?1.3%/A.U. is found. At 15 MeV/nuc this value increases to 20?4%/A.U. Between 4 and 9 A.U. a well defined intensity maximum is observed at approximately 17 MeV/nuc. The average adiabatic energy loss between 1 and 9 A.U. is approximately 4 MeV/nuc/A.U. The observed radial variation between 1 and 9 A.U. is well described by the Gleeson-Axford force field solution of the modulation equations over an energy range extending from 15 to 500 MeV/nuc and is in good agreement with the results reported by other Pioneer experiments. These values are much smaller than had been theoretically predicted

    The radial variation of corotating energetic particle streams in the inner and outer solar system

    Get PDF
    The radial gradient of long-lived, corotating energetic particle streams was measured using observations of .9-2.2 MeV protons from Helios 1 and 2, IMP 7, Pioneer 10 and Pioneer 11. A positive gradient of approximately 350% per AU is found between .3 AU and 1 AU. Between 1 AU and some 3-5 AU, the gradient is variable with an average value of 100% per AU which is consistent with earlier statistical results. A comparison between measurements at 9 AU and approximately 4 AU shows a negative gradient which is variable from -40 to -100% per AU. Possible solar latitudinal effects on these gradient studies are also discussed. Using solar wind and magnetic field data from Helios 1 between 1 AU and .3 AU, the relation between corotating energetic particle events in the inner solar system and the interplanetary medium is examined. It is found that the energetic particles are contained inside the high speed solar wind stream in a region adjacent to the interaction region between low speed and high speed streams

    Corotating energetic particle and fast plasma streams in the inner and outer solar system: Radial dependence and energy spectra

    Get PDF
    Interplanetary acceleration processes are shown as the most plausible explanation for the observed corotating energetic particle events. The relation between the energetic particle events and the properties of the high speed solar wind streams observed at 1 AU were investigated along with the form of the energy spectrum of the corotating energetic particle streams and its variation with respect to CIR boundaries and with radial distance. It is shown that: (1) at 1 AU a correlation exists between the j particle intensity and the solar wind velocity measured during the rising part of the event, of the form I is proportional to exp (V sub sw/V sub o); and (2) the energy spectra from .5 to 20 MeV are well represented by an exponential in momentum of the form dJ/dP = C exp (-P/P sub o). This representation is found to apply from .45 AU to beyond 5 AU. The variation of P sub o with respect to the CIR boundaries was studied using a method of superposed epoch analysis. It is shown that at 1 AU the spectrum remains constant during the first two days and then progressively flattens; between 3-4AU

    The large scale dynamics of the outer heliosphere and the long-term modulation of galactic cosmic rays

    Get PDF
    The network of cosmic ray observatories reaching across the heliosphere has given new insight into the process of solar modulation, establishing that the decreases occur principally in the outer heliosphere and are produced by interplanetary flow systems; that the hysteresis effects appear to be produced by changes in the rigidity dependence of the diffusion coefficient and that the predicted effects on the cosmic ray gradients associated with the reversal of the solar magnetic field polarity are not observed
    corecore