264 research outputs found

    Mid-Infrared High-Contrast Imaging of HD 114174 B : An Apparent Age Discrepancy in a "Sirius-Like" Binary System

    Full text link
    We present new observations of the faint "Sirius-like" companion discovered to orbit HD 114174. Previous attempts to image HD 114174 B at mid-infrared wavelengths using NIRC2 at Keck have resulted in a non-detection. Our new L'-band observations taken with the Large Binocular Telescope and LMIRCam recover the companion (ΔL\Delta L = 10.15 ±\pm 0.15 mag, ρ\rho = 0.675'' ±\pm 0.016'') with a high signal-to-noise ratio (10 σ\sigma). This measurement represents the deepest L' high-contrast imaging detection at sub-arcsecond separations to date, including extrasolar planets. We confirm that HD 114174 B has near-infrared colors consistent with the interpretation of a cool white dwarf (JLJ-L' = 0.76 ±\pm 0.19 mag, KLK-L' = 0.64 ±\pm 0.20). New model fits to the object's spectral energy distribution indicate a temperature TeffT_{\rm eff} = 4260 ±\pm 360 K, surface gravity log g = 7.94 ±\pm 0.03, a cooling age tc_{c} \approx 7.8 Gyr, and mass MM = 0.54 ±\pm 0.01 MM_{\odot}. We find that the cooling age given by theoretical atmospheric models do not agree with the age of HD 114174 A derived from both isochronological and gyrochronological analyses. We speculate on possible scenarios to explain the apparent age discrepancy between the primary and secondary. HD 114174 B is a nearby benchmark white dwarf that will ultimately enable a dynamical mass estimate through continued Doppler and astrometric monitoring. Efforts to characterize its physical properties in detail will test theoretical atmospheric models and improve our understanding of white dwarf evolution, cooling, and progenitor masses.Comment: 6 pages, 3 figures, to be published in the Astrophysical Journal Letter

    Speckle statistics in adaptive optics images at visible wavelengths

    Full text link
    Residual speckles in adaptive optics (AO) images represent a well-known limitation on the achievement of the contrast needed for faint source detection. Speckles in AO imagery can be the result of either residual atmospheric aberrations, not corrected by the AO, or slowly evolving aberrations induced by the optical system. We take advantage of the high temporal cadence (1 ms) of the data acquired by the System for Coronagraphy with High-order Adaptive Optics from R to K bands-VIS forerunner experiment at the Large Binocular Telescope to characterize the AO residual speckles at visible wavelengths. An accurate knowledge of the speckle pattern and its dynamics is of paramount importance for the application of methods aimed at their mitigation. By means of both an automatic identification software and information theory, we study the main statistical properties of AO residuals and their dynamics. We therefore provide a speckle characterization that can be incorporated into numerical simulations to increase their realism and to optimize the performances of both real-time and postprocessing techniques aimed at the reduction of the speckle noise

    New Extinction and Mass Estimates of the Low-mass Companion 1RXS 1609 B with the Magellan AO System: Evidence of an Inclined Dust Disk

    Get PDF
    We used the Magellan adaptive optics system to image the 11 Myr substellar companion 1RXS 1609 B at the bluest wavelengths to date (z' and Ys). Comparison with synthetic spectra yields a higher temperature than previous studies of Teff=2000±100KT_\mathrm{eff}=2000\pm100\mathrm{K} and significant dust extinction of AV=4.50.7+0.5A_V=4.5^{+0.5}_{-0.7} mag. Mass estimates based on the DUSTY tracks gives 0.012-0.015 Msun, making the companion likely a low-mass brown dwarf surrounded by a dusty disk. Our study suggests that 1RXS 1609 B is one of the 25% of Upper Scorpius low-mass members harboring disks, and it may have formed like a star and not a planet out at 320 AU.Comment: 5 pages, 4 figures; accepted to ApJ

    The Multiplicity of M-Dwarfs in Young Moving Groups

    Full text link
    We image 104 newly identified low-mass (mostly M-dwarf) pre-main sequence members of nearby young moving groups with Magellan Adaptive Optics (MagAO) and identify 27 binaries with instantaneous projected separation as small as 40 mas. 15 were previously unknown. The total number of multiple systems in this sample including spectroscopic and visual binaries from the literature is 36, giving a raw multiplicity rate of at least 354+5%35^{+5}_{-4}\% for this population. In the separation range of roughly 1 - 300 AU in which infrared AO imaging is most sensitive, the raw multiplicity rate is at least 244+5%24^{+5}_{-4}\% for binaries resolved by the MagAO infrared camera (Clio). The M-star sub-sample of 87 stars yields a raw multiplicity of at least 304+5%30^{+5}_{-4}\% over all separations, 214+5%21^{+5}_{-4}\% for secondary companions resolved by Clio from 1 to 300 AU (234+5%23^{+5}_{-4}\% for all known binaries in this separation range). A combined analysis with binaries discovered by the Search for Associations Containing Young stars shows that multiplicity fraction as a function of mass and age over the range of 0.2 to 1.2 MM_\odot and 10 - 200 Myr appears to be linearly flat in both parameters and across YMGs. This suggests that multiplicity rates are largely set by 100 Myr without appreciable evolution thereafter. After bias corrections are applied, the multiplicity fraction of low-mass YMG members (<0.6M< 0.6 M_\odot) is in excess of the field.Comment: 25 page
    corecore