202 research outputs found

    Mucosa-associated invariant T cells are systemically depleted in simian immunodeficiency virus-infected rhesus macaques

    Get PDF
    Mucosa-associated invariant T (MAIT) cells contribute to host immune protection against a wide range of potential pathogens via the recognition of bacterial metabolites presented by the major histocompatibility complex class I-related molecule MR1. Although bacterial products translocate systemically in human immunodeficiency virus (HIV)-infected individuals and simian immunodeficiency virus (SIV)-infected Asian macaques, several studies have shown that MAIT cell frequencies actually decrease in peripheral blood during the course of HIV/SIV disease. However, the mechanisms underlying this proportional decline remain unclear. In this study, we characterized the phenotype, activation status, functionality, distribution, and clonotypic structure of MAIT cell populations in the peripheral blood, liver, mesenteric lymph nodes (MLNs), jejunum, and bronchoalveolar lavage (BAL) fluid of healthy and SIV-infected rhesus macaques (RMs). Low frequencies of MAIT cells were observed in the peripheral blood, MLNs, and BAL fluid of SIV-infected RMs. These numerical changes were coupled with increased proliferation and a highly public T cell receptor alpha (TCRα) repertoire in the MAIT cell compartment without redistribution to other anatomical sites. Collectively, our data show systemically decreased frequencies of MAIT cells likely attributable to enhanced turnover in SIV-infected RMs. This process may impair protective immunit

    Association of Progressive CD4+ T Cell Decline in SIV Infection with the Induction of Autoreactive Antibodies

    Get PDF
    The progressive decline of CD4+ T cells is a hallmark of disease progression in human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) infection. Whereas the acute phase of the infection is dominated by virus-mediated depletion of memory CD4+ T cells, chronic infection is often associated with a progressive decline of total CD4+ T cells, including the naïve subset. The mechanism of this second phase of CD4+ T cell loss is unclear and may include immune activation–induced cell death, immune-mediated destruction, and regenerative or homeostatic failure. We studied patterns of CD4+ T cell subset depletion in blood and tissues in a group of 20 rhesus macaques inoculated with derivatives of the pathogenic SIVsmE543-3 or SIVmac239. Phenotypic analysis of CD4+ T cells demonstrated two patterns of CD4+ T cell depletion, primarily affecting either naïve or memory CD4+ T cells. Progressive decline of total CD4+ T cells was observed only in macaques with naïve CD4+ T cell depletion (ND), though the depletion of memory CD4+ T cells was profound in macaques with memory CD4+ T cell depletion (MD). ND macaques exhibited lower viral load and higher SIV-specific antibody responses and greater B cell activation than MD macaques. Depletion of naïve CD4+ T cells was associated with plasma antibodies autoreactive with CD4+ T cells, increasing numbers of IgG-coated CD4+ T cells, and increased incidence of autoreactive antibodies to platelets (GPIIIa), dsDNA, and phospholipid (aPL). Consistent with a biological role of these antibodies, these latter antibodies were accompanied by clinical features associated with autoimmune disorders, thrombocytopenia, and catastrophic thrombotic events. More importantly for AIDS pathogenesis, the level of autoreactive antibodies significantly correlated with the extent of naïve CD4+ T cell depletion. These results suggest an important role of autoreactive antibodies in the CD4+ T cell decline observed during progression to AIDS

    TRIM5alpha Restricts Flavivirus Replication by Targeting the Viral Protease for Proteasomal Degradation

    Get PDF
    Tripartite motif-containing protein 5alpha (TRIM5alpha) is a cellular antiviral restriction factor that prevents early events in retrovirus replication. The activity of TRIM5alpha is thought to be limited to retroviruses as a result of highly specific interactions with capsid lattices. In contrast to this current understanding, we show that both human and rhesus macaque TRIM5alpha suppress replication of specific flaviviruses. Multiple viruses in the tick-borne encephalitis complex are sensitive to TRIM5alpha-dependent restriction, but mosquito-borne flaviviruses, including yellow fever, dengue, and Zika viruses, are resistant. TRIM5alpha suppresses replication by binding to the viral protease NS2B/3 to promote its K48-linked ubiquitination and proteasomal degradation. Importantly, TRIM5alpha contributes to the antiviral function of IFN-I against sensitive flaviviruses in human cells. Thus, TRIM5alpha possesses remarkable plasticity in the recognition of diverse virus families, with the potential to influence human susceptibility to emerging flaviviruses of global concern

    SIV-specific CD8+ T cells are clonotypically distinct across lymphoid and mucosal tissues

    Get PDF
    CD8+ T cell responses are necessary for immune control of simian immunodeficiency virus (SIV). However, the key parameters that dictate antiviral potency remain elusive, conceivably because most studies to date have been restricted to analyses of circulating CD8+ T cells. We conducted a detailed clonotypic, functional, and phenotypic survey of SIV-specific CD8+ T cells across multiple anatomical sites in chronically infected rhesus macaques with high (>10,000 copies/mL plasma) or low burdens of viral RNA (<10,000 copies/mL plasma). No significant differences in response magnitude were identified across anatomical compartments. Rhesus macaques with low viral loads (VLs) harbored higher frequencies of polyfunctional CXCR5+ SIV-specific CD8+ T cells in various lymphoid tissues and higher proportions of unique Gag-specific CD8+ T cell clonotypes in the mesenteric lymph nodes relative to rhesus macaques with high VLs. In addition, public Gag-specific CD8+ T cell clonotypes were more commonly shared across distinct anatomical sites than the corresponding private clonotypes, which tended to form tissue-specific repertoires, especially in the peripheral blood and the gastrointestinal tract. Collectively, these data suggest that functionality and tissue localization are important determinants of CD8+ T cell–mediated efficacy against SIV

    The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics From 10-100 AU

    Full text link
    We present a statistical analysis of the first 300 stars observed by the Gemini Planet Imager Exoplanet Survey (GPIES). This subsample includes six detected planets and three brown dwarfs; from these detections and our contrast curves we infer the underlying distributions of substellar companions with respect to their mass, semi-major axis, and host stellar mass. We uncover a strong correlation between planet occurrence rate and host star mass, with stars M >> 1.5 MM_\odot more likely to host planets with masses between 2-13 MJup_{\rm Jup} and semi-major axes of 3-100 au at 99.92% confidence. We fit a double power-law model in planet mass (m) and semi-major axis (a) for planet populations around high-mass stars (M >> 1.5M_\odot) of the form d2Ndmdamαaβ\frac{d^2 N}{dm da} \propto m^\alpha a^\beta, finding α\alpha = -2.4 ±\pm 0.8 and β\beta = -2.0 ±\pm 0.5, and an integrated occurrence rate of 94+59^{+5}_{-4}% between 5-13 MJup_{\rm Jup} and 10-100 au. A significantly lower occurrence rate is obtained for brown dwarfs around all stars, with 0.80.5+0.8^{+0.8}_{-0.5}% of stars hosting a brown dwarf companion between 13-80 MJup_{\rm Jup} and 10-100 au. Brown dwarfs also appear to be distributed differently in mass and semi-major axis compared to giant planets; whereas giant planets follow a bottom-heavy mass distribution and favor smaller semi-major axes, brown dwarfs exhibit just the opposite behaviors. Comparing to studies of short-period giant planets from the RV method, our results are consistent with a peak in occurrence of giant planets between ~1-10 au. We discuss how these trends, including the preference of giant planets for high-mass host stars, point to formation of giant planets by core/pebble accretion, and formation of brown dwarfs by gravitational instability.Comment: 52 pages, 18 figures. AJ in pres

    Daily and Nondaily Oral Preexposure Prophylaxis in Men and Transgender Women Who Have Sex With Men: The Human Immunodeficiency Virus Prevention Trials Network 067/ADAPT Study

    Get PDF
    Background: Nondaily dosing of oral preexposure prophylaxis (PrEP) may provide equivalent coverage of sex events compared with daily dosing. Methods: At-risk men and transgender women who have sex with men were randomly assigned to 1 of 3 dosing regimens: 1 tablet daily, 1 tablet twice weekly with a postsex dose (time-driven), or 1 tablet before and after sex (event-driven), and were followed for coverage of sex events with pre- and postsex dosing measured by weekly self-report, drug concentrations, and electronic drug monitoring. Results: From July 2012 to May 2014, 357 participants were randomized. In Bangkok, the coverage of sex events was 85% for the daily arm compared with 84% for the time-driven arm (P = .79) and 74% for the event-driven arm (P = .02). In Harlem, coverage was 66%, 47% (P = .01), and 52% (P = .01) for these groups. In Bangkok, PrEP medication concentrations in blood were consistent with use of ≥2 tablets per week in >95% of visits when sex was reported in the prior week, while in Harlem, such medication concentrations occurred in 48.5% in the daily arm, 30.9% in the time-driven arm, and 16.7% in the event-driven arm (P < .0001). Creatinine elevations were more common in the daily arm (P = .050), although they were not dose limiting. Conclusions: Daily dosing recommendations increased coverage and protective drug concentrations in the Harlem cohort, while daily and nondaily regimens led to comparably favorable outcomes in Bangkok, where participants had higher levels of education and employment

    Inhibition of Adaptive Immune Responses Leads to a Fatal Clinical Outcome in SIV-Infected Pigtailed Macaques but Not Vervet African Green Monkeys

    Get PDF
    African green monkeys (AGM) and other natural hosts for simian immunodeficiency virus (SIV) do not develop an AIDS-like disease following SIV infection. To evaluate differences in the role of SIV-specific adaptive immune responses between natural and nonnatural hosts, we used SIVagmVer90 to infect vervet AGM and pigtailed macaques (PTM). This infection results in robust viral replication in both vervet AGM and pigtailed macaques (PTM) but only induces AIDS in the latter species. We delayed the development of adaptive immune responses through combined administration of anti-CD8 and anti-CD20 lymphocyte-depleting antibodies during primary infection of PTM (n = 4) and AGM (n = 4), and compared these animals to historical controls infected with the same virus. Lymphocyte depletion resulted in a 1-log increase in primary viremia and a 4-log increase in post-acute viremia in PTM. Three of the four PTM had to be euthanized within 6 weeks of inoculation due to massive CMV reactivation and disease. In contrast, all four lymphocyte-depleted AGM remained healthy. The lymphocyte-depleted AGM showed only a trend toward a prolongation in peak viremia but the groups were indistinguishable during chronic infection. These data show that adaptive immune responses are critical for controlling disease progression in pathogenic SIV infection in PTM. However, the maintenance of a disease-free course of SIV infection in AGM likely depends on a number of mechanisms including non-adaptive immune mechanisms
    corecore