103 research outputs found

    Superconformal hypermultiplets

    Get PDF
    We present theories of N=2 hypermultiplets in four spacetime dimensions that are invariant under rigid or local superconformal symmetries. The target spaces of theories with rigid superconformal invariance are (4n)-dimensional {\it special} hyper-K\"ahler manifolds. Such manifolds can be described as cones over tri-Sasakian metrics and are locally the product of a flat four-dimensional space and a quaternionic manifold. The latter manifolds appear in the coupling of hypermultiplets to N=2 supergravity. We employ local sections of an Sp(n)×Sp(1)(n)\times{\rm Sp}(1) bundle in the formulation of the Lagrangian and transformation rules, thus allowing for arbitrary coordinatizations of the hyper-K\"ahler and quaternionic manifolds

    Multiscale modelling of masonry structures using domain decomposition techniques

    Get PDF
    This paper describes the application of a domain decomposition technique for multiscale modelling of fracture behaviour in masonry. The use of multiple domains allows for a difference in employed mesh sizes for the macro- and mesoscale. For domains which play a crucial role in the failure process, we apply a mesoscale level meshing, while less critical components can be modelled by a less computationally expensive macroscale mesh. The crack behaviour is modelled by using the GFEM method, while the joint degradation is described using a plasticity based cohesive zone model, with a smooth yield surface. For the purpose of domain decomposition, we propose the use of a FETI method

    Time-dependent mesoscopic modelling of masonry using embedded weak discontinuities

    Get PDF
    In this contribution, a rate-dependent mesoscopic masonry model is presented in which the mortar joints are incorporated by embedded weak discontinuities based on partitions of unity. Within the discontinuities, both an isotropic damage and a Perzyna viscoplastic model are used to describe joint degradation. The elastic domain of the joint behaviour is bounded by a modified Drucker-Prager yield function. The performance of the developed masonry model is demonstrated by the simulation of a three-point bending test and a shear wall test

    Superconformal Hypermultiplets

    Get PDF
    We present theories of N=2 hypermultiplets in four spacetime dimensions that are invariant under rigid or local superconformal symmetries. The target spaces of theories with rigid superconformal invariance are (4n)-dimensional {\it special} hyper-Kähler manifolds. Such manifolds can be described as cones over tri-Sasakian metrics and are locally the product of a flat four-dimensional space and a quaternionic manifold. The latter manifolds appear in the coupling of hypermultiplets to N=2 supergravity. We employ local sections of an Sp(n)×Sp(1)(n)\times{\rm Sp}(1) bundle in the formulation of the Lagrangian and transformation rules, thus allowing for arbitrary coordinatizations of the hyper-Kähler and quaternionic manifolds

    The identification of conformal hypercomplex and quaternionic manifolds

    Full text link
    We review the map between hypercomplex manifolds that admit a closed homothetic Killing vector (i.e. `conformal hypercomplex' manifolds) and quaternionic manifolds of 1 dimension less. This map is related to a method for constructing supergravity theories using superconformal techniques. An explicit relation between the structure of these manifolds is presented, including curvatures and symmetries. An important role is played by `\xi transformations', relating connections on quaternionic manifolds, and a new type `\hat\xi transformations' relating complex structures on conformal hypercomplex manifolds. In this map, the subclass of conformal hyper-Kaehler manifolds is mapped to quaternionic-Kaehler manifolds.Comment: 22 pages, 2 figures, Contribution to the proceedings volume for the Conference "Symmetry in Geometry and Physics" in honour of Dmitri Alekseevsky, September 200

    D-instantons and twistors: some exact results

    Full text link
    We present some results on instanton corrections to the hypermultiplet moduli space in Calabi-Yau compactifications of Type II string theories. Previously, using twistor methods, only a class of D-instantons (D2-instantons wrapping A-cycles) was incorporated exactly and the rest was treated only linearly. We go beyond the linear approximation and give a set of holomorphic functions which, through a known procedure, capture the effect of D-instantons at all orders. Moreover, we show that for a sector where all instanton charges have vanishing symplectic invariant scalar product, the hypermultiplet metric can be computed explicitly.Comment: 32 pages, 3 figures, uses JHEP3.cls; some changes in section 3.3.3; corrected formula for the contact potentia

    Hypermultiplets and Topological Strings

    Full text link
    The c-map relates classical hypermultiplet moduli spaces in compactifications of type II strings on a Calabi-Yau threefold to vector multiplet moduli spaces via a further compactification on a circle. We give an off-shell description of the c-map in N=2 superspace. The superspace Lagrangian for the hypermultiplets is a single function directly related to the prepotential of special geometry, and can therefore be computed using topological string theory. Similarly, a class of higher derivative terms for hypermultiplets can be computed from the higher genus topological string amplitudes. Our results provide a framework for studying quantum corrections to the hypermultiplet moduli space, as well as for understanding the black hole wave-function as a function of the hypermultiplet moduli.Comment: 21 pages, references adde

    N=2 supergravity in five dimensions revisited

    Get PDF
    We construct matter-coupled N=2 supergravity in five dimensions, using the superconformal approach. For the matter sector we take an arbitrary number of vector-, tensor- and hyper-multiplets. By allowing off-diagonal vector-tensor couplings we find more general results than currently known in the literature. Our results provide the appropriate starting point for a systematic search for BPS solutions, and for applications of M-theory compactifications on Calabi-Yau manifolds with fluxes.Comment: 35 pages; v.2: A sign changed in a bilinear fermion term in (5.7

    Instantons in the Double-Tensor Multiplet

    Get PDF
    The double-tensor multiplet naturally appears in type IIB superstring compactifications on Calabi-Yau threefolds, and is dual to the universal hypermultiplet. We revisit the calculation of instanton corrections to the low-energy effective action, in the supergravity approximation. We derive a Bogomolny'i bound for the double-tensor multiplet and find new instanton solutions saturating the bound. They are characterized by the topological charges and the asymptotic values of the scalar fields in the double-tensor multiplet.Comment: 17 pages, LaTeX2e with amsmath.sty; v2: minor change

    Generalized gaugings and the field-antifield formalism

    Get PDF
    We discuss the algebra of general gauge theories that are described by the embedding tensor formalism. We compare the gauge transformations dependent and independent of an invariant action, and argue that the generic transformations lead to an infinitely reducible algebra. We connect the embedding tensor formalism to the field-antifield (or Batalin-Vilkovisky) formalism, which is the most general formulation known for general gauge theories and their quantization. The structure equations of the embedding tensor formalism are included in the master equation of the field-antifield formalism.Comment: 42 pages; v2: some clarifications and 1 reference added; version to be published in JHE
    corecore