5 research outputs found
Impaired Hedgehog signalling-induced endothelial dysfunction is sufficient to induce neuropathy: implication in diabetes
International audienceAIMS:Microangiopathy, i.e. endothelial dysfunction, has long been suggested to contribute to the development of diabetic neuropathy, although this has never been fully verified. In the present paper, we have identified the role of Hedgehog (Hh) signalling in endoneurial microvessel integrity and evaluated the impact of impaired Hh signalling in endothelial cells (ECs) on nerve function.METHODS AND RESULTS:By using Desert Hedgehog (Dhh)-deficient mice, we have revealed, that in the absence of Dhh, endoneurial capillaries are abnormally dense and permeable. Furthermore, Smoothened (Smo) conditional KO mice clarified that this increased vessel permeability is specifically due to impaired Hh signalling in ECs and is associated with a down-regulation of Claudin5 (Cldn5). Moreover, impairment of Hh signalling in ECs was sufficient to induce hypoalgesia and neuropathic pain. Finally in Lepr(db/db) type 2 diabetic mice, the loss of Dhh expression observed in the nerve was shown to be associated with increased endoneurial capillary permeability and decreased Cldn5 expression. Conversely, systemic administration of the Smo agonist SAG increased Cldn5 expression, decreased endoneurial capillary permeability, and restored thermal algesia to diabetic mice, demonstrating that loss of Dhh expression is crucial in the development of diabetic neuropathy.CONCLUSION:The present work demonstrates the critical role of Dhh in maintaining blood nerve barrier integrity and demonstrates for the first time that endothelial dysfunction is sufficient to induce neuropathy
Hedgehog-Dependent Regulation of Angiogenesis and Myogenesis Is Impaired in Aged Mice
International audienceOBJECTIVE:The purpose of this study is to further document alteration of signal transduction pathways, more particularly of hedgehog (Hh) signaling, causing impaired ischemic muscle repair in old mice.APPROACH AND RESULTS:We used 12-week-old (young mice) and 20- to 24-month-old C57BL/6 mice (old mice) to investigate the activity of Hh signaling in the setting of hindlimb ischemia-induced angiogenesis and skeletal muscle repair. In this model, delayed ischemic muscle repair observed in old mice was associated with an impaired upregulation of Gli1. Sonic Hh expression was not different in old mice compared with young mice, whereas desert Hh (Dhh) expression was downregulated in the skeletal muscle of old mice both in healthy and ischemic conditions. The rescue of Dhh expression by gene therapy in old mice promoted ischemia-induced angiogenesis and increased nerve density; nevertheless, it failed to promote myogenesis or to increase Gli1 mRNA expression. After further investigation, we found that, in addition to Dhh, smoothened expression was significantly downregulated in old mice. We used smoothened haploinsufficient mice to demonstrate that smoothened knockdown by 50% is sufficient to impair activation of Hh signaling and ischemia-induced muscle repair.CONCLUSIONS:The present study demonstrates that Hh signaling is impaired in aged mice because of Dhh and smoothened downregulation. Moreover, it shows that hegdehog-dependent regulation of angiogenesis and myogenesis involves distinct mechanisms
Sonic hedgehog mediates a novel pathway of PDGF-BB-dependent vessel maturation
International audienceRecruitment of mural cells, i.e. pericytes and smooth muscle cells (SMCs), is essential to improve the maturation of newly formed vessels. Sonic hedgehog (Shh) has been suggested to promote the formation of larger and more muscularized vessels, but the underlying mechanisms of this process have not yet been elucidated. We first identified Shh as a target of PDGF-BB and found that SMCs respond to Shh by upregulating ERK1/2 and Akt phosphorylation. We next showed that PDGF-BB-induced SMC migration was reduced after inhibition of Shh or its signaling pathway. Moreover, we found that PDGF-BB-induced SMC migration, involves Shh-mediated motility. In vivo, in the mouse model of corneal angiogenesis, Shh is expressed by mural cells of newly formed blood vessels. PDGF-BB inhibition reduced Shh expression, demonstrating that Shh is a target of PDGF-BB, confirming in vitro experiments. Finally, we found that in vivo inhibition of either PDGF-BB or Shh signaling reduces NG2+ mural cell recruitment into neovessels and subsequently reduces neo-vessel lifespan. Our findings demonstrate, for the first time, that Shh is involved in PDGF-BB-induced SMC migration and recruitment of mural cells into neo-vessels and elucidate the molecular signaling pathway involved in this process
Gli3 Regulation of Myogenesis Is Necessary for Ischemia-Induced Angiogenesis
International audienceRATIONALE:A better understanding of the mechanism underlying skeletal muscle repair is required to develop therapies that promote tissue regeneration in adults. Hedgehog signaling has been shown previously to be involved in myogenesis and angiogenesis: 2 crucial processes for muscle development and regeneration.OBJECTIVE:The objective of this study was to identify the role of the hedgehog transcription factor Gli3 in the cross-talk between angiogenesis and myogenesis in adults.METHODS AND RESULTS:Using conditional knockout mice, we found that Gli3 deficiency in endothelial cells did not affect ischemic muscle repair, whereas in myocytes, Gli3 deficiency resulted in severely delayed ischemia-induced myogenesis. Moreover, angiogenesis was also significantly impaired in HSA-Cre(ERT2); Gli3(Flox/Flox) mice, demonstrating that impaired myogenesis indirectly affects ischemia-induced angiogenesis. The role of Gli3 in myocytes was then further investigated. We found that Gli3 promotes myoblast differentiation through myogenic factor 5 regulation. In addition, we found that Gli3 regulates several proangiogenic factors, including thymidine phosphorylase and angiopoietin-1 both in vitro and in vivo, which indirectly promote endothelial cell proliferation and arteriole formation. In addition, we found that Gli3 is upregulated in proliferating myoblasts by the cell cycle-associated transcription factor E2F1.CONCLUSIONS:This study shows for the first time that Gli3-regulated postnatal myogenesis is necessary for muscle repair-associated angiogenesis. Most importantly, it implies that myogenesis drives angiogenesis in the setting of skeletal muscle repair and identifies Gli3 as a potential target for regenerative medicine