12 research outputs found
Delayed intravenous thrombolysis based on MRI mismatch in posterior circulation stroke
The current time-based approach for patient selection for intravenous (IV) thrombolysis in an acute stroke setting neglects the individual variation of cerebral blood flow impairment. This approach restricts the eligible patient population. In the last decade, advanced imaging and especially MRI diffusion- and perfusion-weighted imaging (DWI-PWI) techniques have been used to select patients for IV thrombolysis outside the current 4.5 h time window. Most of these studies focus on the anterior (carotid artery) cerebral circulation only. We report the case of an acute ischemic stroke due to a dissection of the right vertebral artery and occlusion of the posterior inferior cerebellar artery with good clinical outcome. The patient received IV thrombolysis far beyond the current established time window. This decision was based upon a marked MRI DWI-PWI mismatch zone in the posterior circulation territory
A new dynamic model for in vitro evaluation of intravascular devices
Introduction: A dynamic model to evaluate thrombus formation on intravascular catheters in vitro is presented. The model enables fluid infusion, variation in the catheter orientation, and variable flow conditions. It was applied on a catheter used to shunt cerebrospinal fluid to a vein, a dural venous sinus, for the treatment of hydrocephalus. Methods: Fresh human blood-filled circuits were circulated in a non-occlusive roller pump. A catheter infused either with cerebrospinal fluid, Ringer's lactate, or no fluid (control) was inserted through each circuit's wall. Sixteen circuits (six cerebrospinal fluid, six Ringer's lactate, four control) ran for 60 min. Qualitative assessment was performed by measuring viscoelastic properties of blood at the start and end of the experiment; quantitative evaluation of clot formation by scanning electron microscope. Results: Average blood velocity was 79 mm/s, with a pressure wave between 5 and 15 mm Hg. At the experiment's end, the infused fluid represented 5.88% of the blood/infusion volume in the circuit. The control circuits showed no statistical difference between the start and end for viscoelastic testing, whereas both Ringer's lactate and cerebrospinal fluid enhanced coagulation, most pronounced for the latter. Most thrombus material was observed on catheters in the cerebrospinal fluid group. Clot formation was less pronounced on the surface of the catheter facing the blood flow. Discussion: A dynamic model for intravascular catheter testing mimics better clinical conditions when evaluating blood-material interaction. Catheter position, blood flow around the catheter, and infusion fluid all have a potential impact on the hemocompatibility of a given catheter
Treating hydrocephalus with retrograde ventriculosinus shunt : prospective clinical study
BACKGROUND: Since the 1950s, hydrocephalus has been be treated with cerebrospinal fluid (CSF) shunts, usually to the peritoneal cavity or to the right cardiac atrium. However, because of their siphoning effect, these shunts lead to nonphysiologic CSF drainage, with possible comorbidity and high revision rates. More sophisticated shunt valve systems significantly increase costs and technical complexity and remain unsuccessful in a subgroup of patients. In an attempt to obtain physiologic CSF shunting, many neurosurgical pioneers shunted towards the dural sinuses, taking advantage of the physiologic antisiphoning effect of the internal jugular veins. Despite several promising reports, the ventriculosinus shunts have not yet become standard neurosurgical practice.
METHODS: In this single-center prospective clinical study, we implanted the retrograde ventriculosinus shunt, as advocated by EI-Shafei, in 10 patients. This article reports on our operation technique and long-term outcome, including 4 patients in whom this shunt was implanted as a rescue operation.
RESULTS: Implantation of a ventriculosinus shunt proved to be feasible, warranting physiologic drainage of CSF. However, in only 3 of 14 patients, functionality of the retrograde ventriculosinus shunt was maintained during more than 6 years of follow-up. In our opinion, these shunts fail because present venous access devices are difficult to implant correctly and become too easily obstructed. After discussion of possible causes of this frequent obstruction, a new dural venous sinus access device is presented.
CONCLUSION: An easy-to-implant and thrombogenic-resistant dural venous sinus access device needs to be developed before ventriculosinus shunting can become general practice
A non-hydrocephalic goat experimental model to evaluate a ventriculosinus shunt
The ventriculosinus shunt is a promising treatment for hydrocephalus. Currently, different shunt techniques exist, and it is not clear whether one is preferable. This pilot study reports on a non-hydrocephalic goat model (Saanen breed) that provides opportunities to evaluate and optimize several aspects of the ventriculosinus shunt technique. Analysis of the coagulation properties of 14 goats by a viscoelastic coagulation monitor showed that goats have a hypercoagulable state compared to humans. This property can be partially counteracted by antiplatelet drugs. During implantation of a ventriculosinus shunt, a pulsatile reflux of blood was observed. After implantation, the animals recovered to their preoperative state, and none of them developed a superior sagittal sinus thrombosis. Evaluation of the shunts after 16 days showed an obstructing luminal clot. Several model-related factors may have promoted this obstruction: the absence of hydrocephalus, the hypercoagulability of caprine blood and the smaller dimensions of the caprine superior sagittal sinus. However, the pulsatile reflux of blood, which is caused by the compliance of the shunt system distal to the valve, may have been an important factor as well. In conclusion, the non-hydrocephalic goat model limits animal suffering and simplifies the study protocol. This model allows researchers to evaluate their implantation technique and shunt hardware but not the efficacy of the treatment or shunt survival
Measuring the intracranial pressure in collapsed ventricles /
Master of Medicine in de geneeskund
The influence of cerebrospinal fluid on blood coagulation and the implications for ventriculovenous shunting
OBJECTIVE: The effect of CSF on blood coagulation is not known. Enhanced coagulation by CSF may be an issue in thrombotic complications of ventriculoatrial and ventriculosinus shunts. This study aimed to assess the effect of CSF on coagulation and its potential effect on thrombotic events affecting ventriculovenous shunts.
METHODS: Two complementary experiments were performed. In a static experiment, the effect on coagulation of different CSF mixtures was evaluated using a viscoelastic coagulation monitor. A dynamic experiment confirmed the amount of clot formation on the shunt surface in a roller pump model.
RESULTS: CSF concentrations of 9% and higher significantly decreased the activated clotting time (ACT; 164.9 seconds at 0% CSF, 155.6 seconds at 9% CSF, and 145.1 seconds at 32% CSF). Increased clot rates (CRs) were observed starting at a concentration of 5% (29.3 U/min at 0% CSF, 31.6 U/min at 5% CSF, and 35.3 U/min at 32% CSF). The roller pump model showed a significantly greater percentage of shunt surface covered with deposits when the shunts were infused with CSF rather than Ringer's lactate solution (90% vs 63%). The amount of clot formation at the side facing the blood flow (impact side) tended to be lower than that at the side facing away from the blood flow (wake side; 71% vs 86%).
CONCLUSIONS: Addition of CSF to blood accelerates coagulation. The CSF-blood-foreign material interaction promotes clot formation, which might result in thrombotic shunt complications. Further development of the ventriculovenous shunt technique should focus on preventing CSF-blood-foreign material interaction and stagnation of CSF in wake zones
Supplemental material for A non-hydrocephalic goat experimental model to evaluate a ventriculosinus shunt
<p>Supplemental material for A non-hydrocephalic goat experimental model to evaluate a ventriculosinus shunt by Jelle Vandersteene, Edward Baert, Stijn Schauvliege, Kimberley Vandevelde, Frank Dewaele, Filip De Somer and Dirk Van Roost in Laboratory Animals</p