55 research outputs found

    Synaptic Depression Via Mglur1 Positive Allosteric Modulation Suppresses Cue-Induced Cocaine Craving

    Get PDF
    Cue-induced cocaine craving is a major cause of relapse in abstinent addicts. In rats, cue-induced craving progressively intensifies (incubates) during withdrawal from extended-access cocaine self-administration. After ~1 month of withdrawal, incubated craving is mediated by Ca(2+)-permeable AMPA receptors (CP-AMPARs) that accumulate in the nucleus accumbens (NAc). We found that decreased mGluR1 surface expression in the NAc preceded and enabled CP-AMPAR accumulation. Thus, restoring mGluR1 transmission by administering repeated injections of an mGluR1 positive allosteric modulator (PAM) prevented CP-AMPAR accumulation and incubation, whereas blocking mGluR1 transmission at even earlier withdrawal times accelerated CP-AMPAR accumulation. In studies conducted after prolonged withdrawal, when CP-AMPAR levels and cue-induced craving are high, we found that systemic administration of an mGluR1 PAM attenuated the expression of incubated craving by reducing CP-AMPAR transmission in the NAc to control levels. These results suggest a strategy in which recovering addicts could use a systemically active compound to protect against cue-induced relapse

    Natural Reward Experience Alters AMPA and NMDA Receptor Distribution and Function in the Nucleus Accumbens

    Get PDF
    Natural reward and drugs of abuse converge upon the mesolimbic system which mediates motivation and reward behaviors. Drugs induce neural adaptations in this system, including transcriptional, morphological, and synaptic changes, which contribute to the development and expression of drug-related memories and addiction. Previously, it has been reported that sexual experience in male rats, a natural reward behavior, induces similar neuroplasticity in the mesolimbic system and affects natural reward and drug-related behavior. The current study determined whether sexual experience causes long-lasting changes in mating, or ionotropic glutamate receptor trafficking or function in the nucleus accumbens (NAc), following 3 different reward abstinence periods: 1 day, 1 week, or 1 month after final mating session. Male Sprague Dawley rats mated during 5 consecutive days (sexual experience) or remained sexually naïve to serve as controls. Sexually experienced males displayed facilitation of initiation and performance of mating at each time point. Next, intracellular and membrane surface expression of N-methyl-D-aspartate (NMDA: NR1 subunit) and α-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA: GluA1, GluA2 subunits) receptors in the NAc was determined using a bis(sulfosuccinimidyl)suberate (BS3) protein cross-linking assay followed by Western Blot analysis. NR1 expression was increased at 1 day abstinence both at surface and intracellular, but decreased at surface at 1 week of abstinence. GluA2 was increased intracellularly at 1 week and increased at the surface after 1 month of abstinence. Finally, whole-cell patch clamp electrophysiological recordings determined reduced AMPA/NMDA ratio of synaptic currents in NAc shell neurons following stimulation of cortical afferents in sexually experienced males after all reward abstinence periods. Together, these data show that sexual experience causes long-term alterations in glutamate receptor expression and function in the NAc. Although not identical, this sex experience-induced neuroplasticity has similarities to that caused by psychostimulants, suggesting common mechanisms for reinforcement of natural and drug reward

    Denial of Reward in the Neonate Shapes Sociability and Serotonergic Activity in the Adult Rat

    Get PDF
    BACKGROUND: Manipulations of the early environment are linked to long-lasting alterations of emotionality and social capabilities. Denial of rewarding mother-pup interactions in early life of rats could serve as model for child neglect. Negative consequences for social competence in later life, accompanied by changes in the serotonergic system would be expected. In contrast, rewarding mother-pup contact should promote adequate social abilities. METHODOLOGY/PRINCIPAL FINDINGS: Male Wistar rats trained in a T-maze during postnatal days 10-13 under denial (DER) or permission (RER) of maternal contact were tested for play behavior in adolescence and for coping with defeat in adulthood. We estimated serotonin (5-HT) levels in the brain under basal conditions and following defeat, as well as serotonin receptor 1A (5-HT1A) and serotonin transporter (SERT) expression. DER rats exhibited increased aggressive-like play behavior in adolescence (i.e. increased nape attacks, p<0.0001) and selected a proactive coping style during defeat in adulthood (higher sum of proactive behaviors: number of attacks, flights, rearings and defensive upright posture; p = 0.011, p<0.05 vs RER, non-handled-NH). In adulthood, they had lower 5-HT levels in both the prefrontal cortex (p<0.05 vs RER) and the amygdala (p<0.05 vs NH), increased 5-HT levels following defeat (PFC p<0.0001) and decreased serotonin turnover (amygdala p = 0.008). The number of 5-HT1A immunopositive cells in the CA1 hippocampal area was increased (p<0.05 DER, vs RER, NH); SERT levels in the amygdala were elevated (p<0.05 vs RER, NH), but were lower in the prefrontal cortex (p<0.05 vs NH). CONCLUSIONS/SIGNIFICANCE: Denial of expected maternal reward early in life negatively affects sociability and the serotonergic system in a complex manner. We propose that our animal model could contribute to the identification of the neurobiological correlates of early neglect effects on social behavior and coping with challenges, but also in parallel with the effects of a rewarding early-life environment

    Neurobiology of apathy in Alzheimer's disease

    Full text link

    Contrasting Roles of Dopamine and Noradrenaline in the Motivational Properties of Social Play Behavior in Rats

    No full text
    Social play behavior, abundant in the young of many mammalian species, is generally assumed to be important for social and cognitive development. Social play is highly rewarding, and as such, the expression of social play depends on its pleasurable and motivational properties. Since the motivational properties of social play have only been sporadically investigated, we developed a setup in which rats responded for social play under a progressive ratio schedule of reinforcement. Dopaminergic neurotransmission plays a key role in incentive motivational processes, and both dopamine and noradrenaline have been implicated in the modulation of social play behavior. Therefore, we investigated the role of dopamine and noradrenaline in the motivation for social play. Treatment with the psychostimulant drugs methylphenidate and cocaine increased responding for social play, but suppressed its expression during reinforced play periods. The dopamine reuptake inhibitor GBR-12909 increased responding for social play, but did not affect its expression, whereas the noradrenaline reuptake inhibitor atomoxetine decreased responding for social play as well as its expression. The effects of methylphenidate and cocaine on responding for social play were blocked by the dopamine receptor antagonist α-flupenthixol, but their play-suppressant effects were not altered. In contrast, pretreatment with the α2-adrenoceptor antagonist RX821002 prevented the play-suppressant effect of methylphenidate, but left its effect on responding for social play intact. These data demonstrate dissociable roles for dopamine and noradrenaline in social play behavior: dopamine stimulates the motivation for social play, whereas noradrenaline negatively modulates the motivation for social play and its expression
    • …
    corecore