471 research outputs found

    Does an NKT-cell-based immunotherapeutic approach have a future in multiple myeloma?

    Get PDF
    Natural killer T (NKT) cells constitute a unique subset of innate-like T lymphocytes which differ from conventional T cells by recognizing lipid antigens presented by the non-polymorphic major histocompatibility complex (MHC) I-like molecule CD1d. Despite being a relatively infrequent population of lymphocytes, NKT cells can respond rapidly upon activation with glycosphingolipids by production of cytokines which aim to polarize different axes of the immune system. Due to their dual effector capacities, NKT cells can play a vital role in cancer immunity, infection, inflammation and autoimmune diseases. It is believed that modulation of their activity towards immune activation can be a useful tool in anti-tumor immunotherapeutic strategies. Here we summarize the characteristics of NKT cells and discuss their involvement in immunosurveillance. Furthermore, an update is given about their role and the progress that has been made in the field of multiple myeloma (MM). Finally, some challenges are discussed that are currently hampering further progress

    Follow-up of bone lesions in an experimental multiple myeloma mouse model: description of an in vivo technique using radiography dedicated for mammography.

    Get PDF
    The evolution of bone lesions in transplantable C57BL/KaLwRjj 5T mouse myeloma (MM) has been followed in vivo. Mice were anaesthetised and a radiograph of the pelvis and hind legs was performed by a radiograph dedicated for mammography. This is the first description of an in vivo technique under experimental conditions whereby the development of bone lesions owing to the MM growth was demonstrated

    Experimental African trypanosome infection suppresses the development of multiple myeloma in mice by inducing intrinsic apoptosis of malignant plasma cells

    Get PDF
    Multiple myeloma (MM) is characterized by the accumulation of malignant plasma cells in the bone marrow (BM). Recently, several studies have highlighted the role of pathogens in either promoting or dampening malignancies of unrelated origin. Trypanosoma brucei is an extracellular protozoan parasite which causes sleeping sickness. Our group has previously demonstrated that trypanosome infection affects effector plasma B cells. Therefore, we hypothesized that T. brucei infection could have an impact on MM development. Using the immunocompetent 5T33MM model, we demonstrated a significant reduction in BM-plasmacytosis and M-protein levels in mice infected with T. brucei, resulting in an increased survival of these mice. Blocking IFN. could only partially abrogate these effects, suggesting that other mechanisms are involved in the destruction of malignant plasma cells. We found that T. brucei induces intrinsic apoptosis of 5T33MM cells in vivo, and that this was associated with reduced endogenous unfolded protein response (UPR) activation. Interestingly, pharmacological inhibition of IRE1 alpha and PERK was sufficient to induce apoptosis in these cells. Together, these results demonstrate that trypanosome infections can interfere with MM development by suppressing endogenous UPR activation and promoting intrinsic apoptosis

    [89Zr]Oxinate4 for long-term in vivo cell tracking by positron emission tomography

    Get PDF
    Purpose 111In (typically as [111In]oxinate3) is a gold standard radiolabel for cell tracking in humans by scintigraphy. A long half-life positron-emitting radiolabel to serve the same purpose using positron emission tomography (PET) has long been sought. We aimed to develop an 89Zr PET tracer for cell labelling and compare it with [111In]oxinate3 single photon emission computed tomography (SPECT). Methods [89Zr]Oxinate4 was synthesised and its uptake and efflux were measured in vitro in three cell lines and in human leukocytes. The in vivo biodistribution of eGFP-5T33 murine myeloma cells labelled using [89Zr]oxinate4 or [111In]oxinate3 was monitored for up to 14 days. 89Zr retention by living radiolabelled eGFP-positive cells in vivo was monitored by FACS sorting of liver, spleen and bone marrow cells followed by gamma counting. Results Zr labelling was effective in all cell types with yields comparable with 111In labelling. Retention of 89Zr in cells in vitro after 24 h was significantly better (range 71 to >90 %) than 111In (43–52 %). eGFP-5T33 cells in vivo showed the same early biodistribution whether labelled with 111In or 89Zr (initial pulmonary accumulation followed by migration to liver, spleen and bone marrow), but later translocation of radioactivity to kidneys was much greater for 111In. In liver, spleen and bone marrow at least 92 % of 89Zr remained associated with eGFP-positive cells after 7 days in vivo. Conclusion [89Zr]Oxinate4 offers a potential solution to the emerging need for a long half-life PET tracer for cell tracking in vivo and deserves further evaluation of its effects on survival and behaviour of different cell types

    An Improved Harvest and in Vitro Expansion Protocol for Murine Bone Marrow-Derived Mesenchymal Stem Cells

    Get PDF
    Compared to bone marrow (BM) derived mesenchymal stem cells (MSCs) from human origin or from other species, the in vitro expansion and purification of murine MSCs (mMSCs) is much more difficult because of the low MSC yield and the unwanted growth of non-MSCs in the in vitro expansion cultures. We describe a modified protocol to isolate and expand murine BM derived MSCs based on the combination of mechanical crushing and collagenase digestion at the moment of harvest, followed by an immunodepletion step using microbeads coated with CD11b, CD45 and CD34 antibodies. The number of isolated mMSCs as estimated by colony forming unit-fibroblast (CFU-F) assay showed that this modified isolation method could yield 70.0% more primary colonies. After immunodepletion, a homogenous mMSC population could already be obtained after two passages. Immunodepleted mMSCs (ID-mMSCs) are uniformly positive for stem cell antigen-1 (Sca-1), CD90, CD105 and CD73 cell surface markers, but negative for the hematopoietic surface markers CD14, CD34 and CD45. Moreover the immunodepleted cell population exhibits more differentiation potential into adipogenic, osteogenic and chondrogenic lineages. Our data illustrate the development of an efficient and reliable expansion protocol increasing the yield and purity of mMSCs and reducing the overall expansion time

    The Effects of Forodesine in Murine and Human Multiple Myeloma Cells

    Get PDF
    Multiple myeloma (MM) is the second most commonly diagnosed hematological malignancy, characterized by a monoclonal proliferation of malignant cells in the bone marrow. Despite recent advances in treatment strategies, MM remains incurable and new therapeutical targets are needed. Recently forodesine, a purine nucleoside phosphorylase inhibitor, was found to induce apoptosis in leukemic cells of chronic lymphocytic leukemia patients by increasing the dGTP levels. We therefore tested whether forodesine was able to inhibit proliferation and/or induce apoptosis in both murine and human MM cells through a similar pathway. We found that after 48 hours of treatment with forodesine there was a slight dGTP increase in 5T33MM and RPMI-8226 MM cells associated with partial inhibition of proliferation and a limited induction of apoptosis. When investigating the pathways leading to cell cycle arrest and apoptosis, we observed an upregulation of p27, caspase 3, and BIM. We can conclude that forodesine has some effects on MM cells but not as impressive as the known effects in leukemic cells. Forodesine might be however potentiating towards other established cytotoxic drugs in MM

    Murine 5T multiple myeloma cells induce angiogenesis in vitro and in vivo

    Get PDF
    Multiple myeloma is a B cell malignancy. Recently, it has been demonstrated that bone marrow samples of patients with multiple myeloma display an enhanced angiogenesis. The mechanisms involved seem to be multiple and complex. We here demonstrate that the murine 5T multiple myeloma models are able to induce angiogenesis in vitro by using a rat aortic ring assay and in vivo by determining the microvessel density. The rat aortic rings cultured in 5T multiple myeloma conditioned medium exhibit a higher number of longer and more branched microvessels than the rings cultured in control medium. In bone marrow samples from 5T multiple myeloma diseased mice, a statistically significant increase of the microvessel density was observed when compared to bone marrow samples from age-matched controls. The angiogenic phenotype of both 5T multiple myeloma cells could be related, at least in part, to their capacity to produce vascular endothelial growth factor. These data clearly demonstrate that the 5T multiple myeloma models are good models to study angiogenesis in multiple myeloma and will allow to unravel the mechanisms of neovascularisation, as well as to test new putative inhibitors of angiogenesis

    Antitumour and antiangiogenic effects of Aplidin® in the 5TMM syngeneic models of multiple myeloma

    Get PDF
    Aplidin® is an antitumour drug, currently undergoing phase II evaluation in different haematological and solid tumours. In this study, we analysed the antimyeloma effects of Aplidin in the syngeneic 5T33MM model, which is representable for the human disease. In vitro, Aplidin inhibited 5T33MMvv DNA synthesis with an IC50 of 3.87 nM. On cell-cycle progression, the drug induced an arrest in transition from G0/G1 to S phase, while Western blot showed a decreased cyclin D1 and CDK4 expression. Furthermore, Aplidin induced apoptosis by lowering the mitochondrial membrane potential, by inducing cytochrome c release and by activating caspase-9 and caspase-3. For the in vivo experiment, 5T33MM-injected C57Bl/KaLwRij mice were intraperitoneally treated with vehicle or Aplidin (90 μg kg−1 daily). Chronic treatment with Aplidin was well tolerated and reduced serum paraprotein concentration by 42% (P<0.001), while BM invasion with myeloma cells was decreased by 35% (P<0.001). Aplidin also reduced the myeloma-associated angiogenesis to basal values. This antiangiogenic effect was confirmed in vitro and explained by inhibition of endothelial cell proliferation and vessel formation. These data indicate that Aplidin is well tolerated in vivo and its antitumour and antiangiogenic effects support the use of the drug in multiple myeloma

    Co-inoculation of prostate cancer cells with U937 enhances tumor growth and angiogenesis in vivo

    Full text link
    Tumor-associated macrophages (TAMs) have been implicated in promoting tumor growth and development. Here we present evidence that demonstrates that co-inoculation of male athymic nude mice with PC-3 prostate cancer cells and U937 promonocytic cells enhances tumor growth and increases tumor angiogenesis.Male athymic nude mice were co-inoculated with PC-3 and U937 cells (control or IL-4 stimulated) and tumor growth was monitored over time. Immunohistochemical analysis of tumor specimens was performed for proliferation markers (e.g., Ki67) and the effects of IL-4 stimulation on U937 cells were analyzed for chemokine expression.The presence of U937 cells increased the rate of tumor growth in vivo and stimulated increased microvascular density within the tumor bed. Stimulation of U937 cells with IL-4 resulted in a significant increase in several pro-angiogenic and pro-tumor chemokines (e.g., CCL2).Co-inoculation increases prostate cancer growth via upregulation of chemokines that induce angiogenesis within the tumor. J. Cell. Biochem. 103: 1–8, 2008. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/57522/1/21379_ftp.pd

    Histone deacetylase inhibitors in multiple myeloma

    Get PDF
    Novel drugs such as bortezomib and high-dose chemotherapy combined with stem cell transplantation improved the outcome of multiple myeloma patients in the past decade. However, multiple myeloma often remains incurable due to the development of drug resistance governed by the bone marrow microenvironment. Therefore targeting new pathways to overcome this resistance is needed. Histone deacetylase (HDAC) inhibitors represent a new class of anti-myeloma agents. Inhibiting HDACs results in histone hyperacetylation and alterations in chromatine structure, which, in turn, cause growth arrest differentiation and/or apoptosis in several tumor cells. Here we summarize the molecular actions of HDACi as a single agent or in combination with other drugs in different in vitro and in vivo myeloma models and in (pre-)clinical trials
    corecore