129 research outputs found

    SIVsm Quasispecies Adaptation to a New Simian Host

    Get PDF
    Despite the potential for infectious agents harbored by other species to become emerging human pathogens, little is known about why some agents establish successful cross-species transmission, while others do not. The simian immunodeficiency viruses (SIVs), certain variants of which gave rise to the human HIV-1 and HIV-2 epidemics, have demonstrated tremendous success in infecting new host species, both simian and human. SIVsm from sooty mangabeys appears to have infected humans on several occasions, and was readily transmitted to nonnatural Asian macaque species, providing animal models of AIDS. Here we describe the first in-depth analysis of the tremendous SIVsm quasispecies sequence variation harbored by individual sooty mangabeys, and how this diverse quasispecies adapts to two different host species—new nonnatural rhesus macaque hosts and natural sooty mangabey hosts. Viral adaptation to rhesus macaques was associated with the immediate amplification of a phylogenetically related subset of envelope (env) variants. These variants contained a shorter variable region 1 loop and lacked two specific glycosylation sites, which may be selected for during acute infection. In contrast, transfer of SIVsm to its natural host did not subject the quasispecies to any significant selective pressures or bottleneck. After 100 d postinfection, variants more closely representative of the source inoculum reemerged in the macaques. This study describes an approach for elucidating how pathogens adapt to new host species, and highlights the particular importance of SIVsm env diversity in enabling cross-species transmission. The replicative advantage of a subset of SIVsm variants in macaques may be related to features of target cells or receptors that are specific to the new host environment, and may involve CD4-independent engagement of a viral coreceptor conserved among primates

    Neutral Dissociation of Hydrogen Following Photoexcitation of HCl at the Chlorine K Edge

    Full text link
    Time-of-flight mass spectroscopy was used to study the relaxation dynamics of HCl following photoexcitation in the vicinity of the Cl K edge (~2.8 keV) using monochromatic synchrotron radiation. At the lowest resonant excitation to the 6ơ* antibonding orbital, almost half of the excited molecules decay by emission of a neutral H atom, mostly in coincidence with a highly charged Cln1 ion. The present work demonstrates that neutral-atom emission can be a significant decay channel for excited states with very short lifetimes (1 fs). [S1050-2947(98)03604-X

    Photofragmentation of Third-Row Hydrides Following Photoexcitation at Deep-Core Levels

    Full text link
    The relaxation dynamics of HCl, DCl, H2S, and D2S following photoexcitation in the vicinities of the Cl and S K-shell thresholds (∼2.8keV for Cl, ∼2.5 keV for S) were studied by means of ion time-of-flight mass spectroscopy. In all cases, the onset of pre-edge core-shell photoionization precedes the formation on resonance of a significant amount of neutral hydrogen as well as postcollision-interaction effects above threshold. Examination of the width of the H+ peak in spectra taken with the analyzer parallel and perpendicular to the polarization vector of the incident light indicates that on resonance, the photofragmentation asymmetry parameter, β, is approximately two for HCl, and is clearly positive for H2S

    Environmental Emission of Pharmaceuticals from Wastewater Treatment Plants in the USA

    Get PDF
    The residual drugs, drug bioconjugates, and their metabolites, mostly from human and veterinary usage, are routinely flushed down the drain, and enter wastewater treatment plants (WWTP). Increasing population, excessive use of allopathic medicine, continual introduction of novel drugs, and existing inefficient wastewater treatment processes result in the discharge of large volumes of pharmaceuticals and their metabolites from the WWTPs into the environment. The effluent from the WWTPs globally contaminate ~25% of rivers and the lakes. Pharmaceuticals in the environment, as contaminants of emerging concerns, behave as pseudo-persistent despite their relatively short environmental half-lives in the environment. Therefore, residual levels of pharmaceuticals in the environment not only pose a threat to the wildlife but also affect human health through contaminated food and drinking water. This chapter highlights WWTPs as point-sources of their environmental emissions and various effects on the aquatic and terrestrial ecosystem

    Uptake, Translocation, and Accumulation of Pharmaceutical and Hormone Contaminants in Vegetables

    Get PDF
    A team led by Wei Zheng, senior research scientist at ISTC, investigated whether our food is at risk of accumulating PPCPs when irrigated with wastewater from concentrated animal feedlot operations (CAFOs) and wastewater treatment plants (WWTPs). The results appeared in Zheng, Wei et al (2014). "Uptake, Translocation, and Accumulation of Pharmaceutical and Hormone Contaminants in Vegetables." in Kyung Myung, Norbert M. Satchivi, and Colleen K. Kingston, eds. Retention, Uptake, and Translocation of Agrochemicals in Plants. Washington, DC : American Chemical Society, 167-181. DOI: 10.1021/bk-2014-1171.ch009.Ope

    Pharmaceutical Formulation Facilities as Sources of Opioids and Other Pharmaceuticals to Wastewater Treatment Plant Effluents

    Get PDF
    Facilities involved in the manufacture of pharmaceutical products are an under-investigated source of pharmaceuticals to the environment. Between 2004 and 2009, 35 to 38 effluent samples were collected from each of three wastewater treatment plants (WWTPs) in New York and analyzed for seven pharmaceuticals including opioids and muscle relaxants. Two WWTPs (NY2 and NY3) receive substantial flows (>20% of plant flow) from pharmaceutical formulation facilities (PFF) and one (NY1) receives no PFF flow. Samples of effluents from 23 WWTPs across the United States were analyzed once for these pharmaceuticals as part of a national survey. Maximum pharmaceutical effluent concentrations for the national survey and NY1 effluent samples were generally <1 μg/L. Four pharmaceuticals (methadone, oxycodone, butalbital, and metaxalone) in samples of NY3 effluent had median concentrations ranging from 3.4 to >400 μg/L. Maximum concentrations of oxycodone (1700 μg/L) and metaxalone (3800 μg/L) in samples from NY3 effluent exceeded 1000 μg/L. Three pharmaceuticals (butalbital, carisoprodol, and oxycodone) in samples of NY2 effluent had median concentrations ranging from 2 to 11 μg/L. These findings suggest that current manufacturing practices at these PFFs can result in pharmaceuticals concentrations from 10 to 1000 times higher than those typically found in WWTP effluents

    Blocking TLR7- and TLR9-mediated IFN-α Production by Plasmacytoid Dendritic Cells Does Not Diminish Immune Activation in Early SIV Infection

    Get PDF
    Persistent production of type I interferon (IFN) by activated plasmacytoid dendritic cells (pDC) is a leading model to explain chronic immune activation in human immunodeficiency virus (HIV) infection but direct evidence for this is lacking. We used a dual antagonist of Toll-like receptor (TLR) 7 and TLR9 to selectively inhibit responses of pDC but not other mononuclear phagocytes to viral RNA prior to and for 8 weeks following pathogenic simian immunodeficiency virus (SIV) infection of rhesus macaques. We show that pDC are major but not exclusive producers of IFN-α that rapidly become unresponsive to virus stimulation following SIV infection, whereas myeloid DC gain the capacity to produce IFN-α, albeit at low levels. pDC mediate a marked but transient IFN-α response in lymph nodes during the acute phase that is blocked by administration of TLR7 and TLR9 antagonist without impacting pDC recruitment. TLR7 and TLR9 blockade did not impact virus load or the acute IFN-α response in plasma and had minimal effect on expression of IFN-stimulated genes in both blood and lymph node. TLR7 and TLR9 blockade did not prevent activation of memory CD4+ and CD8+ T cells in blood or lymph node but led to significant increases in proliferation of both subsets in blood following SIV infection. Our findings reveal that virus-mediated activation of pDC through TLR7 and TLR9 contributes to substantial but transient IFN-α production following pathogenic SIV infection. However, the data indicate that pDC activation and IFN-α production are unlikely to be major factors in driving immune activation in early infection. Based on these findings therapeutic strategies aimed at blocking pDC function and IFN-α production may not reduce HIV-associated immunopathology. © 2013 Kader et al

    Sooty Mangabey Genome Sequence Provides Insight into AIDS Resistance in a Natural SIV Host

    Get PDF
    In contrast to infections with human immunodeficiency virus (HIV) in humans and simian immunodeficiency virus (SIV) in macaques, SIV infection of a natural host, sooty mangabeys (Cercocebus atys), is non-pathogenic despite high viraemia. Here we sequenced and assembled the genome of a captive sooty mangabey. We conducted genome-wide comparative analyses of transcript assemblies from C. atys and AIDS-susceptible species, such as humans and macaques, to identify candidates for host genetic factors that influence susceptibility. We identified several immune-related genes in the genome of C. atys that show substantial sequence divergence from macaques or humans. One of these sequence divergences, a C-terminal frameshift in the toll-like receptor-4 (TLR4) gene of C. atys, is associated with a blunted in vitro response to TLR-4 ligands. In addition, we found a major structural change in exons 3-4 of the immune-regulatory protein intercellular adhesion molecule 2 (ICAM-2); expression of this variant leads to reduced cell surface expression of ICAM-2. These data provide a resource for comparative genomic studies of HIV and/or SIV pathogenesis and may help to elucidate the mechanisms by which SIV-infected sooty mangabeys avoid AIDS
    corecore