33 research outputs found

    Carbon footprint of Canadian dairy products: Calculations and issues

    Get PDF
    The Canadian dairy sector is a major industry with about 1 million cows. This industry emits about 20% of the total greenhouse gas (GHG) emissions from the main livestock sectors (beef, dairy, swine, and poultry). In 2006, the Canadian dairy herd produced about 7.7 Mt of raw milk, resulting in about 4.4 Mt of dairy products (notably 64% fluid milk and 12% cheese). An integrated cradle-to-gate model (field to processing plant) has been developed to estimate the carbon footprint (CF) of 11 Canadian dairy products. The on-farm part of the model is the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES). It considers all GHG emissions associated with livestock production but, for this study, it was run for the dairy sector specifically. Off-farm GHG emissions were estimated using the Canadian Food Carbon Footprint calculator, (cafoo)(2)-milk. It considers GHG emissions from the farm gate to the exit gate of the processing plants. The CF of the raw milk has been found lower in western provinces [0.93 kg of CO2 equivalents (CO(2)e)/L of milk] than in eastern provinces (1.12 kg of CO(2)e/L of milk) because of differences in climate conditions and dairy herd management. Most of the CF estimates of dairy products ranged between 1 and 3 kg of CO(2)e/kg of product. Three products were, however, significantly higher: cheese (5.3 kg of CO(2)e/kg), butter (7.3 kg of CO(2)e/kg), and milk powder (10.1 kg of CO(2)e/kg). The CF results depend on the milk volume needed, the co-product allocation process (based on milk solids content), and the amount of energy used to manufacture each product. The GHG emissions per kilogram of protein ranged from 13 to 40 kg of CO(2)e. Two products had higher values: cream and sour cream, at 83 and 78 kg of CO(2)e/kg, respectively. Finally, the highest CF value was for butter, at about 730 kg of CO(2)e/kg. This extremely high value is due to the fact that the intensity indicator per kilogram of product is high and that butter is almost exclusively fat. Protein content is often used to compare the CF of products; however, this study demonstrates that the use of a common food component is not suitable as a comparison unit in some cases. Functionality has to be considered too, but it might be insufficient for food product labeling because different reporting units (adapted to a specific food product) will be used, and the resulting confusion could lead consumers to lose confidence in such labeling. Therefore, simple units might not be ideal and a more comprehensive approach will likely have to be developed

    The challenge of reconciling bottom-up agricultural methane emissions inventories with top-down measurements

    Get PDF
    Agriculture is estimated to produce more than 40% of anthropogenic methane (CH4) emissions, contributing to global climate change. Bottom-up, IPCC based methodologies are typically used to estimate the agriculture sector\u2019s contribution, but these estimates are rarely verified beyond the farm gate, due to the challenge of separating interspersed sources. We present flux measurements of CH4, using eddy covariance (EC), relaxed eddy accumulation (REA) and wavelet covariance obtained using an aircraft-based measurement platform and compare these top-down estimates with bottom-up footprint adjusted inventory estimates of CH4 emissions for an agricultural region in eastern Ontario, Canada. Top-down CH4 fluxes agree well (mean \ub1 1 standard error: EC = 17 \ub1 4 mg CH4 m 122 d 121; REA = 19 \ub1 3 mg CH4 m 122 d 121, wavelet covariance = 16 \ub1 3 mg CH4 m 122 d 121), and are not statistically different, but significantly exceed bottom-up inventory estimates of CH4 emissions based on animal husbandry (8 \ub1 1 mg CH4 m 122 d 121). The discrepancy between top-down and bottom-up estimates was found to be related to both increasing fractional area of wetlands in the flux footprint, and increasing surface temperature. For the case when the wetland area in the flux footprint was less than 10% fractional coverage, the top-down and bottom-up estimates were within the measurement error. This result provides the first independent verification of agricultural methane emissions inventories at the regional scale. Wavelet analysis, which provides spatially resolved fluxes, was used to attempt to separate CH4 emissions from managed and unmanaged CH4 sources. Opportunities to minimize the challenges of verifying agricultural CH4 emissions inventories using aircraft flux measuring systems are discussed.Peer reviewed: YesNRC publication: Ye

    Impact of modified tillage on runoff and nutrient loads from potato fields in Prince Edward Island

    No full text
    Potato production accounts for ~24% of the cultivated land-use in Prince Edward Island, Canada. The island often experiences prolonged dry periods interspersed with excessive rainfall events throughout the growing season. Thus, water retention is important for maximum crop production while sediment and nutrient loading to surface water systems are also concerns. Therefore, agronomic practices that reduce the environmental impact of potato production are being sought. Basin tillage (BT) is a potential option in which small dams are created in the furrows (row middles), resulting in basins that enhance infiltration, reduce runoff, minimize contaminant loads, and increase yields. This on-farm study compared BT against two types of 'conventional' hilling treatments with replicated plots on four field sites over two growing seasons. Field sites had sandy loam soils with topography slopes ranging from 3% to 5%. Within each field, nine 25 m long and 3.66 m wide (4 rows) plots were established, including three plots of each hilling treatment (CT = conventional tillage; RS = row shaper tillage; BT = basin tillage). Runoff volume, nutrient (phosphate, ammonium, nitrate) and suspended solids loads were measured using collection barrels on the down slope end of each furrow. Basin tillage had 78% and 75% less runoff than CT and RS, respectively (P Basin tillage Soil erosion Potato production

    Towards an inventory of methane emissions from manure management that is responsive to changes on Canadian farms

    No full text
    Methane emissions from manure management represent an important mitigation opportunity, yet emission quantification methods remain crude and do not contain adequate detail to capture changes in agricultural practices that may influence emissions. Using the Canadian emission inventory methodology as an example, this letter explores three key aspects for improving emission quantification: (i) obtaining emission measurements to improve and validate emission model estimates, (ii) obtaining more useful activity data, and (iii) developing a methane emission model that uses the available farm management activity data. In Canada, national surveys to collect manure management data have been inconsistent and not designed to provide quantitative data. Thus, the inventory has not been able to accurately capture changes in management systems even between manure stored as solid versus liquid. To address this, we re-analyzed four farm management surveys from the past decade and quantified the significant change in manure management which can be linked to the annual agricultural survey to create a continuous time series. In the dairy industry of one province, for example, the percentage of manure stored as liquid increased by 300% between 1991 and 2006, which greatly affects the methane emission estimates. Methane emissions are greatest from liquid manure, but vary by an order of magnitude depending on how the liquid manure is managed. Even if more complete activity data are collected on manure storage systems, default Intergovernmental Panel on Climate Change (IPCC) guidance does not adequately capture the impacts of management decisions to reflect variation among farms and regions in inventory calculations. We propose a model that stays within the IPCC framework but would be more responsive to farm management by generating a matrix of methane conversion factors (MCFs) that account for key factors known to affect methane emissions: temperature, retention time and inoculum. This MCF matrix would be populated using a mechanistic emission model verified with on-farm emission measurements. Implementation of these MCF values will require re-analysis of farm surveys to quantify liquid manure emptying frequency and timing, and will rely on the continued collection of this activity data in the future. For model development and validation, emission measurement campaigns will be needed on representative farms over at least one full year, or manure management cycle (whichever is longer). The proposed approach described in this letter is long-term, but is required to establish baseline data for emissions from manure management systems. With these improvements, the manure management emission inventory will become more responsive to the changing practices on Canadian livestock farms

    Treatment of potato farm wastewater with sand filtration

    No full text
    <p>This study examined sand filtration as a component of a potato farm wastewater treatment system. Two different sand filter designs, saturated flow and unsaturated flow, were evaluated at three different loading rates: 34, 68, and 136 L m<sup>−2</sup> d<sup>−1</sup>. Filter design had a significant effect, with unsaturated flow sand filters having significantly (<i>p</i> < .05) better total suspended solids (TSS) removal (89%) than saturated flow sand filters did (79%). Loading rate also had a significant (<i>p</i> < .05) effect, given that the lowest loading rate had higher mass removal for TSS than the higher loading rates did. Overall, all sand filters removed TSS, 5-d biochemical oxygen demand, and total phosphorus well (62–99%). Total nitrogen removal was twice as high in unsaturated flow filters (53%) than in saturated flow filters (27%), because of the recurring cycle of aerobic and anaerobic conditions during sand saturation and drying in unsaturated flow sand filters.</p

    Greenhouse gas and ammonia emissions from production of compost bedding on a dairy farm

    No full text
    Recent developments in composting technology enable dairy farms to produce their own bedding from composted manure. This management practice alters the fate of carbon and nitrogen; however, there is little data availa
    corecore