211 research outputs found

    Geochemistry of cumulates from the Bjerkreim-Sokndal layered intrusion (S. Norway). Part II. REE and the trapped liquid fraction

    Full text link
    Rare earth elements in bulk cumulates and in separated minerals (plagioclase, apatite, Ca-poor and Ca-rich pyroxenes, ilmenite and magnetite) from the Bjerkreim-Sokndal layered intrusion (Rogaland Anorthosite Province, SW Norway) are investigated to better define the proportion of trapped liquid and its influence on bulk cumulate composition. In leuconoritic rocks (made up of plagioclase, Ca-poor pyroxene, ilmenite, magnetite, olivine), where apatite is an intercumulus phase, even a small fraction of trapped liquid significantly affects the REE pattern of the bulk cumulate, together with cumulus minerals proportion and composition. Contrastingly, in gabbronoritic cumulates characterized by the presence of cumulus Ca-rich pyroxene and apatite, cumulus apatite buffers the REE content. La/Sm and Eu/Eu* VS. P2O2 variations in leuconorites display mixing trends between a pure adcumulate and the composition of the trapped liquid, assumed to be similar to the parental magma. Assessment of the trapped liquid fraction in leuconorites ranges from 2 to 25% and is systematically higher in the north-eastern part of the intrusion. The likely reason for this wide range of TLF is different cooling rates in different parts of the intrusion depending on the distance to the gneissic margins. The REE patterns of liquids in equilibrium with primitive cumulates are calculated with mass balance equations. Major elements modelling (Duchesne, J.C., Charlier, B., 2005. Geochemistry of cumulates from the Bjerkreiin-Sokndal layered intrusion (S. Norway): Part I. Constraints from major elements on the mechanism of cumulate formation and on the jotunite liquid line of descent. Lithos. 83, 299-254) permits calculation of the REE content of melt in equilibrium with gabbronorites. Partition coefficients for REE between cumulus minerals and a jotunitic liquid are then calculated. Calculated liquids from the most primitive cumulates are similar to a primitive jotunite representing the parental magma of the intrusion, taking into account the trapped liquid fraction calculated from the P2O5 content. Consistent results demonstrate the reliability of liquid compositions calculated from bulk cumulates and confirm the hypothesis that the trapped liquid has crystallized as a closed-system without subsequent mobility of REE in a migrating interstitial liquid. (c) 2005 Elsevier B.V. All rights reserved

    What modulates eruptive styles at Villarrica and Osorno volcanoes (Chile)?

    Full text link
    Villarrica and Osorno are two active stratovolcanoes in the Central Southern Volcanic Zone (CSVZ) of the Chilean Andes that share several geochemical characteristics: near-primary, tholeiitic parent magmas (50-53 wt. % SiO2), overlapping major/trace element differentiation trends, and comparable storage conditions [1-4]. Yet, their eruptive styles contrast each other significantly. Villarrica is a steady-state, open-vent stratovolcano with a lava lake since 1985, which produced ~100 low to moderate intensity Strombolian eruptions and lava flows since 1579 CE. Osorno is a closed-vent stratovolcano with 10x less eruptions for the same period. We initially proposed that differences in eruptive style and frequency could be due to a relatively higher degree of crustal permeability under Villarrica than Osorno due to the Liquiñe-Ofqui Fault Zone [5]. Preliminary analyses show that both volcanoes have broadly similar olivine chemistry ranges and multimodal distributions, with minor differences in olivine and melt chemistry/textures between Villarrica (Fo72-87) and Osorno (Fo66-82) [4,5]. Diffusion timescales for both volcanoes are mostly 250 days. This suggests the degree of crustal permeability underneath the volcanoes are likely comparable, prompting consideration of other factors. In this contribution, we evaluate the role of magma supply rate, storage conditions, and slab input in modulating eruptive styles at Osorno and Villarrica based on an updated dataset of magma storage conditions, diffusion timescales, geochemical data compilations, and inferences drawn from published literature. We find that magma storage conditions of both volcanoes are similar to each other at T~1100°C, P~200 MPa, along with comparable input of fluids released from the down-going slab. The multimodality in olivine chemistry, diversity in types of olivine growth zones and textures, timescale ranges, coupled with the relatively high magma supply rate estimates for Villarrica from the literature suggest magma supply rate could modulate eruptive style at Villarrica and Osorno. With this contribution, we aim to further current understanding of subduction zone magmatism and geodynamics, with implications on volcanic hazard reduction. 1. Vergara et al. (2004). J. S. Am. Earth Sci. 17: 227-238. 2. Morgado et al. (2015). JVGR, 306: 1-16. 3. Pizarro et al. (2019). JVGR. 384: 48-63. 4. Bechon et al. (2022). Lithos. 106777. 5. Romero et al. (2022). Bull. Volc. 85 (2)

    The petrology of a hazardous volcano: Calbuco (Central Southern VolcanicZone, Chile)

    Full text link
    peer reviewedThe recurrent explosive eruptions of Calbuco (Andean Southern Volcanic Zone (SVZ)) threat a rapidly expanding tour- istic and economic region of Chile. Providing tighter constraints on its magmatic system is therefore important for better monitoring its activity. Calbuco is also distinguished by hornblende-bearing assemblages that contrast with the anhydrous parageneses of most Central SVZ volcanoes. Here we build on previous work to propose a detailed petrological model of the magmatic system beneath Calbuco. Geochemical data acquired on a hundred samples collected in the four units of the volcano show no secular compositional change indicating a steady magmatic system since ~ 300 ka. A tholeiitic Al2O3-rich (20 wt. %) basalt (Mg# = 0.59) is the parent magma of a differentiation trend straddling the tholeiitic/calc-alkaline fields and displaying a narrow compositional Daly gap. Amphibole crystallization was enabled by the higher H2O content of the basalt (3–3.5 wt. % H2O at 50 wt. % SiO2) compared to neighboring volcanoes. This characteristic is inherited from the primary mantle melt and possibly results from a lower degree of partial melting induced by the mantle wedge thermal structure. Although macrocrysts are not all in chemical equilibrium with their host rocks and were thus presumably unlocked from the zoned crystal mush and transported in the carrier melt, the bulk-rock trend follows both experimental liquid lines of descent and the chemical trend of calculated melts in equilibrium with amphibole (AEMs). These contradictory observations can be reconciled if minerals are transported in near cotectic proportions. The AEMs overlap the Daly gap revealing that the missing liquid compositions were present in the storage region. Geothermobarometers all indicate that the chemical diversity from basalt to dacite was acquired at a shallow depth (210–460 MPa). We suggest that differentiation from the primary magma to the parental basalt took place either in the same storage region or at the MOHO.CDR J.00066.14, PDR T.0079.18, Odysseus grant (ON

    New Data on the Genesis and Evolution of the Primitive Magmas of Mount Cameroon: Contribution of Melt Inclusions

    Get PDF
    Mount Cameroon is a Plio-Quaternary volcanic massif, without a centralcrater, made up of more than 140 pyroclastic cones. It is one of theactive volcanoes of the Cameroon Volcanic Line. Mount Cameroon meltinclusions are found in microdroplets trapped in the early minerals (olivines)from the pyroclastic products. The analysis of these melt inclusions allowedus to find primitive liquids compared to lavas. Major elements study ofthe magmatic inclusions, trapped in the most magnesian olivines (Mg#84-86) of Mount Cameroon revealed “primitive” liquids of basanite and alkalibasalt type with variable composition compared to the much more uniformbasalts of the magmatic series of Mount Cameroon. The study of thesetrapped liquids shows that: (1) the original primitive lavas did not undergothe process of evolution by FC, but rather underwent fundamentally (orexclusively) the process of partial melting; (2) the emitted lavas, evolvedessentially by FC; (3) the variations in the trace element contents of theprimitive liquids directly reflect a variation in the rate of partial melting ofa homogeneous mantelic source. The very high La/Yb ratios of the MountCameroon melt inclusions (> 20) characterize a garnet lherzolite source.Spectra of the melt inclusions show a negative anomaly or depletion in K,Rb and Ba as those of HIMU. The “primitive” liquids and lavas of MountCameroon represent a co-genetic sequence formed by varying degrees ofpartial melting of a source considered as homogeneous

    A tribute to Jean Clair Duchesne

    Full text link
    corecore