33 research outputs found

    Synergistic Formation of Radicals by Irradiation with Both Vacuum Ultraviolet and Atomic Hydrogen: A Real-Time In Situ Electron Spin Resonance Study

    Full text link
    We report on the surface modification of polytetrafluoroethylene (PTFE) as an example of soft- and bio-materials that occur under plasma discharge by kinetics analysis of radical formation using in situ real-time electron spin resonance (ESR) measurements. During irradiation with hydrogen plasma, simultaneous measurements of the gas-phase ESR signals of atomic hydrogen and the carbon dangling bond (C-DB) on PTFE were performed. Dynamic changes of the C-DB density were observed in real time, where the rate of density change was accelerated during initial irradiation and then became constant over time. It is noteworthy that C-DBs were formed synergistically by irradiation with both vacuum ultraviolet (VUV) and atomic hydrogen. The in situ real-time ESR technique is useful to elucidate synergistic roles during plasma surface modification.Comment: 14 pages, 4 figure

    High-Resolution Epifluorescence and Time-of-Flight Secondary Ion Mass Spectrometry Chemical Imaging Comparisons of Single DNA Microarray Spots

    No full text
    DNA microarray assay performance is commonly compromised by spot–spot probe and signal variations as well as heterogeneity within printed microspots. Accurate metrics for captured DNA target signal rely upon uniform spot distribution of both probe and target DNA to yield reliable hybridized signal. While often presumed, this is neither easily achieved nor often proven experimentally. High-resolution imaging techniques were used to determine spot heterogeneity in identical DNA array microspots comprising varied ratios of unlabeled and dye-labeled DNA probes contact-printed onto commercial arraying surfaces. Epifluorescence imaging data for individual array microspots were correlated with time-of-flight secondary ion mass spectrometry (TOF-SIMS) chemical state imaging of the same spots. Epifluorescence imaging intensity distinguished varying DNA density distributed both within a given spot and from spot to spot. TOF-SIMS chemical analysis confirmed these heterogeneous printed DNA distributions by tracking bound Cy3 dye, DNA base, and phosphate specific ion fragments often correlating to fluorescence patterns within identical spots. TOF-SIMS ion fragments originating from probe DNA and Cy3 dye are enriched in microspot centers, correlating with high fluorescence intensity regions. Both TOF-SIMS and epifluorescence support Marangoni flow effects on spot drying, with high-density DNA–Cy3 located in spot centers and nonhomogeneous DNA distribution within printed spots. Microspot image dimensional analysis results for DNA droplet spreading show differing DNA densities across printed spots. The study directly supports different DNA probe chemical and spatial microenvironments within spots that yield spot–spot signal variations known to affect DNA target hybridization efficiencies and kinetics. These variations critically affect probe–target duplex formation and DNA array signal generation

    Synthesis and texturization processes of (super)-hydrophobic fluorinated surfaces by atmospheric plasma

    No full text
    The synthesis and texturization processes of fluorinated surfaces by means of atmospheric plasma are investigated and presented through an integrated study of both the plasma phase and the resulting material surface. Three methods enhancing the surface hydrophobicity up to the production of super-hydrophobic surfaces are evaluated: (i) the modification of a polytetrafluoroethylene (PTFE) surface, (ii) the plasma deposition of fluorinated coatings and (iii) the incorporation of nanoparticles into those fluorinated films. In all the approaches, the nature of the plasma gas appears to be a crucial parameter for the desired property. Although a higher etching of the PTFE surface can be obtained with a pure helium plasma, the texturization can only be created if O2 is added to the plasma, which simultaneously decreases the total etching. The deposition of CxFy films by a dielectric barrier discharge leads to hydrophobic coatings with water contact angles (WCAs) of 115°, but only the filamentary argon discharge induces higher WCAs. Finally, nanoparticles were deposited under the fluorinated layer to increase the surface roughness and therefore produce super-hydrophobic hybrid coatings characterized by the nonadherence of the water droplet at the surface.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore