3,760 research outputs found
Simulation of a Hybrid Optical/Radio/Acoustic Extension to IceCube for EeV Neutrino Detection
Astrophysical neutrinos at EeV energies promise to be an interesting
source for astrophysics and particle physics. Detecting the predicted
cosmogenic (``GZK'') neutrinos at 10 - 10 eV would test models of
cosmic ray production at these energies and probe particle physics at 100
TeV center-of-mass energy. While IceCube could detect 1 GZK event per
year, it is necessary to detect 10 or more events per year in order to study
temporal, angular, and spectral distributions. The IceCube observatory may be
able to achieve such event rates with an extension including optical, radio,
and acoustic receivers. We present results from simulating such a hybrid
detector.Comment: 4 pages, 2 figures; to appear in the Proceedings of the 29th ICRC,
Pune, Indi
Institutional moral hazard in the multi-tiered regulation of unemployment in Canada:Background paper
Institutional moral hazard in the multi-tiered regulation of unemployment in Canada:Background paper
Simulation of Cosmic Ray neutrinos Interactions in Water
The program CORSIKA, usually used to simulate extensive cosmic ray air
showers, has been adapted to a water medium in order to study the acoustic
detection of ultra high energy neutrinos. Showers in water from incident
protons and from neutrinos have been generated and their properties are
described. The results obtained from CORSIKA are compared to those from other
available simulation programs such as Geant4.Comment: Talk presented on behalf of the ACoRNE Collaboration at the ARENA
Workshop 200
New pixelized Micromegas detector with low discharge rate for the COMPASS experiment
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of
the future physics projects planned by the COMPASS collaboration at CERN.
Several major upgrades compared to present detectors are being studied:
detectors standing five times higher luminosity with hadron beams, detection of
beam particles (flux up to a few hundred of kHz/mm^{2}, 10 times larger than
for the present Micromegas detectors) with pixelized read-out in the central
part, light and integrated electronics, and improved robustness. Two solutions
of reduction of discharge impact have been studied, with Micromegas detectors
using resistive layers and using an additional GEM foil. Performance of such
detectors has also been measured. A large size prototypes with nominal active
area and pixelized read-out has been produced and installed at COMPASS in 2010.
In 2011 prototypes featuring an additional GEM foil, as well as an resistive
prototype, are installed at COMPASS and preliminary results from those
detectors presented very good performance. We present here the project and
report on its status, in particular the performance of large size prototypes
with an additional GEM foil.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous
Detectors conference (MPGD2011), 29-31 August 2011, Kobe, Japa
The PANDA GEM-based TPC Prototype
We report on the development of a GEM-based TPC prototype for the PANDA
experiment. The design and requirements of this device will be illustrated,
with particular emphasis on the properties of the recently tested GEM-detector,
the characterization of the read-out electronics and the development of the
tracking software that allows to evaluate the GEM-TPC data.Comment: submitted to NIMA 4 pages, 6 picture
Preferred reporting items for studies mapping onto preference-based outcome measures: The MAPS statement
'Mapping' onto generic preference-based outcome measures is increasingly being used as a means of generating health utilities for use within health economic evaluations. Despite publication of technical guides for the conduct of mapping research, guidance for the reporting of mapping studies is currently lacking. The MAPS (MApping onto Preference-based measures reporting Standards) statement is a new checklist, which aims to promote complete and transparent reporting of mapping studies. The primary audiences for the MAPS statement are researchers reporting mapping studies, the funders of the research, and peer reviewers and editors involved in assessing mapping studies for publication. A de novo list of 29 candidate reporting items and accompanying explanations was created by a working group comprised of six health economists and one Delphi methodologist. Following a two-round, modified Delphi survey with representatives from academia, consultancy, health technology assessment agencies and the biomedical journal editorial community, a final set of 23 items deemed essential for transparent reporting, and accompanying explanations, was developed. The items are contained in a user friendly 23 item checklist. They are presented numerically and categorised within six sections, namely: (i) title and abstract; (ii) introduction; (iii) methods; (iv) results; (v) discussion; and (vi) other. The MAPS statement is best applied in conjunction with the accompanying MAPS explanation and elaboration document. It is anticipated that the MAPS statement will improve the clarity, transparency and completeness of reporting of mapping studies. To facilitate dissemination and uptake, the MAPS statement is being co-published by eight health economics and quality of life journals, and broader endorsement is encouraged. The MAPS working group plans to assess the need for an update of the reporting checklist in five years' time. This statement was published jointly in Applied Health Economics and Health Policy, Health and Quality of Life Outcomes, International Journal of Technology Assessment in Health Care, Journal of Medical Economics, Medical Decision Making, PharmacoEconomics, and Quality of Life Research
New pixelized Micromegas detector for the COMPASS experiment
New Micromegas (Micro-mesh gaseous detectors) are being developed in view of
the future physics projects planned by the COMPASS collaboration at CERN.
Several major upgrades compared to present detectors are being studied:
detectors standing five times higher luminosity with hadron beams, detection of
beam particles (flux up to a few hundred of kHz/mm^2, 10 times larger than for
the present detectors) with pixelized read-out in the central part, light and
integrated electronics, and improved robustness. Studies were done with the
present detectors moved in the beam, and two first pixelized prototypes are
being tested with muon and hadron beams in real conditions at COMPASS. We
present here this new project and report on two series of tests, with old
detectors moved into the beam and with pixelized prototypes operated in real
data taking condition with both muon and hadron beams.Comment: 11 pages, 5 figures, proceedings to the Micro-Pattern Gaseous
Detectors conference (MPGD2009), 12-15 June 2009, Kolympari, Crete, Greece
Minor details added and language corrections don
- …