71 research outputs found
Minimal Basis Iterative Stockholder: Atoms in Molecules for Force-Field Development
Atomic partial charges appear in the Coulomb term of many force-field models
and can be derived from electronic structure calculations with a myriad of
atoms-in-molecules (AIM) methods. More advanced models have also been proposed,
using the distributed nature of the electron cloud and atomic multipoles. In
this work, an electrostatic force field is defined through a concise
approximation of the electron density, for which the Coulomb interaction is
trivially evaluated. This approximate "pro-density" is expanded in a minimal
basis of atom-centered s-type Slater density functions, whose parameters are
optimized by minimizing the Kullback-Leibler divergence of the pro-density from
a reference electron density, e.g. obtained from an electronic structure
calculation. The proposed method, Minimal Basis Iterative Stockholder (MBIS),
is a variant of the Hirshfeld AIM method but it can also be used as a
density-fitting technique. An iterative algorithm to refine the pro-density is
easily implemented with a linear-scaling computational cost, enabling
applications to supramolecular systems. The benefits of the MBIS method are
demonstrated with systematic applications to molecular databases and extended
models of condensed phases. A comparison to 14 other AIM methods shows its
effectiveness when modeling electrostatic interactions. MBIS is also suitable
for rescaling atomic polarizabilities in the Tkatchenko-Sheffler scheme for
dispersion interactions.Comment: 61 pages, 12 figures, 2 table
Discretional policies and transparency of qualifications: changing Europe without money and without States?
The paper aims to contribute to the European education policy literature through an analysis of what I refer to as ‘discretional policies’, which are now instrumentally used by the EU but that have so far been largely overlooked by this literature, and to the literature on transparency of qualifications. The paper argues, first, that the education policy literature—as other policy literatures—has overlooked individual ‘discretional policies’, to which greater attention should now be paid as they are employed by EU institutions to bypass Member States in particularly difficult policy areas and to try to address their often alleged detachment from citizens. Second, the paper looks at the crucial aspect of the effectiveness of discretionary policies and their consequences for individuals and Member States, with reference to a case study of the Europass framework in education and training
Real-time Feynman path integral with Picard–Lefschetz theory and its applications to quantum tunneling, Annals Phys
Picard–Lefschetz theory is applied to path integrals of quantum mechanics, in order to compute real-time dynam-ics directly. After discussing basic properties of real-time path integrals on Lefschetz thimbles, we demonstrate its computational method in a concrete way by solving three simple examples of quantum mechanics. It is applied to quantum mechanics of a double-well potential, and quantum tunneling is discussed. We identify all of the complex saddle points of the classical action, and their properties are discussed in detail. However a big theoretical difficulty turns out to appear in rewriting the original path integral into a sum of path integrals on Lefschetz thimbles. We dis-cuss generality of that problem and mention its importance. Real-time tunneling processes are shown to be described by those complex saddle points, and thus semi-classical description of real-time quantum tunneling becomes possible on solid ground if we could solve that problem
Identification of Nanobodies against the Acute Myeloid Leukemia Marker CD33
Nanobodies (Nbs) are the smallest antigen-binding, single domain fragments derived from heavy-chain-only antibodies from Camelidae. Among the several advantages over conventional monoclonal antibodies, their small size (12–15 kDa) allows them to extravasate rapidly, to show improved tissue penetration, and to clear rapidly from blood, which are important characteristics for cancer imaging and targeted radiotherapy. Herein, we identified Nbs against CD33, a marker for acute myeloid leukemia (AML). A total of 12 Nbs were generated against recombinant CD33 protein, out of which six bound natively CD33 protein, expressed on the surface of acute myeloid leukemia THP-1 cells. The equilibrium dissociation constants (KD) of these six Nbs and CD33 range from 4 to 270 nM, and their melting temperature (Tm) varies between 52.67 and 67.80 °C. None of these Nbs showed leukemogenicity activity in vitro. The selected six candidates were radiolabeled with 99mTc, and their biodistribution was evaluated in THP-1-tumor-bearing mice. The imaging results demonstrated the fast tumor-targeting capacity of the Nbs in vivo. Among the anti-CD33 Nbs, Nb_7 showed the highest tumor uptake (2.53 ± 0.69 % injected activity per gram (IA/g), with low background signal, except in the kidneys and bladder. Overall, Nb_7 exhibits the best characteristics to be used as an anti-CD33 targeting vehicle for future diagnostic or therapeutic applications
- …