365 research outputs found

    Microscopic study of 240Pu, mean-field and beyond

    Full text link
    The influence of exact angular-momentum projection and configuration mixing on properties of a heavy, well-deformed nucleus is discussed for the example of Pu240. Starting from a self-consistent model using Skyrme interactions, we analyze the resulting modifications of the deformation energy, the fission barrier height, the excitation energy of the superdeformed minimum associated with the fission isomer, the structure of the lowest rotational bands with normal deformation and superdeformation, and the corresponding quadrupole moments and transition moments. We present results obtained with the Skyrme interactions SLy4 and SLy6, which have slightly different surface tensions.Comment: 7 pages REVTEX4, 4 figures. accepted for publication in Phys. Rev.

    The contrasting fission potential-energy structure of actinides and mercury isotopes

    Full text link
    Fission-fragment mass distributions are asymmetric in fission of typical actinide nuclei for nucleon number AA in the range 228A258228 \lnsim A \lnsim 258 and proton number ZZ in the range 90Z10090\lnsim Z \lnsim 100. For somewhat lighter systems it has been observed that fission mass distributions are usually symmetric. However, a recent experiment showed that fission of 180^{180}Hg following electron capture on 180^{180}Tl is asymmetric. We calculate potential-energy surfaces for a typical actinide nucleus and for 12 even isotopes in the range 178^{178}Hg--200^{200}Hg, to investigate the similarities and differences of actinide compared to mercury potential surfaces and to what extent fission-fragment properties, in particular shell structure, relate to the structure of the static potential-energy surfaces. Potential-energy surfaces are calculated in the macroscopic-microscopic approach as functions of fiveshape coordinates for more than five million shapes. The structure of the surfaces are investigated by use of an immersion technique. We determine properties of minima, saddle points, valleys, and ridges between valleys in the 5D shape-coordinate space. Along the mercury isotope chain the barrier heights and the ridge heights and persistence with elongation vary significantly and show no obvious connection to possible fragment shell structure, in contrast to the actinide region, where there is a deep asymmetric valley extending from the saddle point to scission. The mechanism of asymmetric fission must be very different in the lighter proton-rich mercury isotopes compared to the actinide region and is apparently unrelated to fragment shell structure. Isotopes lighter than 192^{192}Hg have the saddle point blocked from a deep symmetric valley by a significant ridge. The ridge vanishes for the heavier Hg isotopes, for which we would expect a qualitatively different asymmetry of the fragments.Comment: 8 pages, 9 figure

    Characterization of a Plain Broadband Textile PIFA

    Get PDF
    Bandwidth characteristic of a wearable antenna is one of the major factors in determining its usability on the human body. In this work, a planar inverted-F antenna (PIFA) structure is proposed to achieve a large bandwidth to avoid serious antenna reflection coefficient detuning when placed in proximity of the body. The proposed structure is designed based on a simple structure, in order to provide practicality in application and maintain fabrication simplicity. Two different types of conductive textiles, namely Pure Copper Polyester Taffeta Fabric (PCPTF) and ShieldIt, are used in order to proof its concept, in comparison with a metallic antenna made from copper foil. The design is spaced and fabricated using a 6 mm thick fleece fabric. To cater for potential fabrication and material measurement inaccuracies, both antennas' performance are also investigated and analyzed with varying physical and material parameters. From this investigation, it is found that the proposed structure's extended bandwidth enabled the antenna to function with satisfactory on-body reflection coefficients, despite unavoidable gain and efficiency reduction

    Fusion of radioactive 132^{132}Sn with 64^{64}Ni

    Full text link
    Evaporation residue and fission cross sections of radioactive 132^{132}Sn on 64^{64}Ni were measured near the Coulomb barrier. A large sub-barrier fusion enhancement was observed. Coupled-channel calculations including inelastic excitation of the projectile and target, and neutron transfer are in good agreement with the measured fusion excitation function. When the change in nuclear size and shift in barrier height are accounted for, there is no extra fusion enhancement in 132^{132}Sn+64^{64}Ni with respect to stable Sn+64^{64}Ni. A systematic comparison of evaporation residue cross sections for the fusion of even 112124^{112-124}Sn and 132^{132}Sn with 64^{64}Ni is presented.Comment: 9 pages, 11 figure

    Calculations of Branching Ratios for Radiative-Capture, One-Proton, and Two-Neutron Channels in the Fusion Reaction 209^{209}Bi+70^{70}Zn

    Full text link
    We discuss the possibility of the non-one-neutron emission channels in the cold fusion reaction 70^{70}Zn + 209^{209}Bi to produce the element Z=113. For this purpose, we calculate the evaporation-residue cross sections of one-proton, radiative-capture, and two-neutron emissions relative to the one-neutron emission in the reaction 70^{70}Zn + 209^{209}Bi. To estimate the upper bounds of those quantities, we vary model parameters in the calculations, such as the level-density parameter and the height of the fission barrier. We conclude that the highest possibility is for the 2n reaction channel, and its upper bounds are 2.4% and at most less than 7.9% with unrealistic parameter values, under the actual experimental conditions of [J. Phys. Soc. Jpn. {\bf 73} (2004) 2593].Comment: 6 pages, 4 figure

    The interaction of 11Li with 208Pb

    Full text link
    Background: 11Li is one of the most studied halo nuclei. The fusion of 11Li with 208Pb has been the subject of a number of theoretical studies with widely differing predictions, ranging over four orders of magnitude, for the fusion excitation function. Purpose: To measure the excitation function for the 11Li + 208Pb reaction. Methods: A stacked foil/degrader assembly of 208Pb targets was irradiated with a 11Li beam producing center of target beam energies from above barrier to near barrier energies (40 to 29 MeV). The intensity of the 11Li beam (chopped) was 1250 p/s and the beam on-target time was 34 hours. The alpha-decay of the stopped evaporation residues was detected in a alpha-detector array at each beam energy in the beam-off period (the beam was on for <= 5 ns and then off for 170 ns). Results: The 215At evaporation residues were associated with the fusion of 11Li with 208Pb. The 213,214At evaporation residues were formed by the breakup of 11Li into 9Li + 2n, with the 9Li fusing with 208Pb. The 214At evaporation residue appears to result from a "quasi-breakup" process. Conclusions: Most of 11Li + 208Pb interactions lead to breakup with a small fraction (<= 11%) leading to complete fusion.Comment: 25 pages, 11 figure
    corecore