3,050 research outputs found

    Increasing Geoheritage Awareness through Non-Formal Learning

    Get PDF
    Non-formal learning can have a crucial role in increasing citizens’ literacy to geoscience providing the opportunity to raise the public profile of geology and geomorphology. Starting from these remarks, the project presented here is one of the first attempts, at national level, aimed at achieving the territorial upgrading based on geoheritage enhancement. The project started thanks to a bottom-up input and involved the collaboration between scholars and local administrations and stakeholders for the valorization of a fluvial area within the Municipality of Castellarano (Emilia Apennines, Northern Italy). To achieve this aim of non-formal learning activities, based on the interpretation of the geoheritage, have been implemented. In fact, the investigated area includes valuable geological and geomorphological features which have been used, in the frame of the project here presented, to promote local geodiversity and geotourism. In particular, three geosites of regional significance were considered for the creation of EarthCaches, interpretative panels and guided excursions. Interpretative contents were designed to be educational, providing accurate but non-technical explanations. Attention was given in including illustrations playing an important role in the learning process. The results revealed that the implemented activities positively contribute to raising public awareness on the value of geoheritage

    Impact of partially bosonized collective fluctuations on electronic degrees of freedom

    Get PDF
    In this work we present a comprehensive analysis of collective electronic fluctuations and their effect on single-particle properties of the Hubbard model. Our approach is based on a standard dual fermion/boson scheme with the interaction truncated at the two-particle level. Within this framework we compare various approximations that differ in the set of diagrams (ladder vs exact diagrammatic Monte Carlo), and/or in the form of the four-point interaction vertex (exact vs partially bosonized). This allows to evaluate the effect of all components of the four-point vertex function on the electronic self-energy. In particular, we observe that contributions that are not accounted for by the partially bosonized approximation for the vertex have only a minor effect on electronic degrees of freedom in a broad range of model parameters. In addition, we find that in the regime, where the ladder dual fermion approximation provides an accurate solution of the problem, the leading contribution to the self-energy is given by the longitudional bosonic modes. This can be explained by the fact that contributions of transverse particle-hole and particle-particle modes partially cancel each other. Our results justify the applicability of the recently introduced dual triply irreducible local expansion (D-TRILEX) method that represents one of the simplest consistent diagrammatic extensions of the dynamical mean-field theory. We find that the self-consistent D-TRILEX approach is reasonably accurate also in challenging regimes of the Hubbard model, even where the dynamical mean-field theory does not provide the optimal local reference point (impurity problem) for the diagrammatic expansion

    Multi-band D-TRILEX approach to materials with strong electronic correlations

    Get PDF
    We present the multi-band dual triply irreducible local expansion (D-TRILEX) approach to interacting electronic systems and discuss its numerical implementation. This method is designed for a self-consistent description of multi-orbital systems that can also have several atoms in the unit cell. The current implementation of the D-TRILEX approach is able to account for the frequency- and channel-dependent long-ranged electronic interactions. We show that our method is accurate when applied to small multi-band systems such as the Hubbard-Kanamori dimer. Calculations for the extended Hubbard, the two-orbital Hubbard-Kanamori, and the bilayer Hubbard models are also discussed

    Geomorphology of the north-eastern coast of Gozo (Malta, Mediterranean Sea)

    Get PDF
    The paper presents a geomorphological map of the north-eastern coast of the Island of Gozo (Malta) integrating inland and offshore areas at the scale 1:15,000. The map derives from the integration of different methods, such as aerial photo interpretation, field surveys and analysis of seafloor bathymetry. The landforms identified on land were shaped by coastal, fluvial, karst and gravity-induced processes, and some of them prolong on the seafloor. Most of the submerged landforms appear to have been modelled in subaerial conditions during sea-level lowstands, having been sealed by the rising sea in post-glacial times. Two sketches accompany the Main Map showing the type and distribution of coastal geomorphotypes and the land cover of the area

    Extended regime of coexisting metallic and insulating phases in a two-orbital electronic system

    Full text link
    We investigate the metal-to-insulator phase transition driven by electronic interactions in the quarter-filled Hubbard-Kanamori model on a cubic lattice with two orbitals split by a crystal field. We show that a systematic consideration of the non-local collective electronic fluctuations strongly affects the state-of-the-art picture of the phase transition provided by the dynamical mean field theory. Our calculations reveal a region of phase coexistence between the metallic and the Mott insulating states, which is missing in the local approximation to electronic correlations. This coexistence region is remarkably broad in terms of the interaction strength. It starts at a critical value of the interaction slightly larger than the bandwidth and extends to more than twice the bandwidth, where the two solutions merge into a Mott insulating phase. Our results illustrate that non-local correlations can have crucial consequences on the electronic properties in the strongly correlated regime, even in the simplest multi-orbital systems

    In-hospital and out-of-hospital stroke in patients with COVID-19: two different diseases?

    Get PDF
    Background: Ischemic stroke is a known complication of COVID-19. It may have a different pathogenesis and worse outcome compared to stroke in patients without COVID-19. Furthermore, patients with COVID-19 and out-of-hospital stroke onset might have different characteristics compared to patients with COVID-19 and in-hospital stroke onset. The aim of our study was to analyze the characteristics of patients with stroke with and without COVID-19 and of patients with COVID-19 with in-hospital and out-of-hospital stroke. Methods: We performed a retrospective study of all consecutive patients admitted to our hospital with ischemic stroke between October 2020 and February 2021. We compared functional outcome, lab test, demographic, and clinical characteristics between patients with or without COVID-19. We performed a sub-analysis comparing patients with COVID-19 and in-hospital and out-of-hospital stroke onset. Results: We included in the final analysis 137 patients of whom 26 with COVID-19. Half (13) had out-of-hospital stroke and half in-hospital stroke onset. Overall, patients with COVID-19 had higher mortality compared to the control group (27% vs 9%, p: 0.02), and non-significantly lower rate of good functional outcome (50% vs 63%, p: 0.22). Patients with COVID-19 and out-of-hospital stroke had higher rate of good functional outcome (69% vs 39%, p: 0.05), higher lymphocyte count, and lower D-dimer compared with patients with in-hospital stroke onset. Conclusions: Patients with stroke and COVID-19 had higher mortality compared to patients without COVID-19. Among patients with COVID-19 those with out-of-hospital stroke had better outcome and fewer blood test abnormalities compared to patients with in-hospital stroke

    Optimization of an Injectable Hydrogel Depot System for the Controlled Release of Retinal-Targeted Hybrid Nanoparticles

    Get PDF
    A drawback in the development of treatments that can reach the retina is the presence of barriers in the eye that restrain compounds from reaching the target. Intravitreal injections hold promise for retinal delivery, but the natural defenses in the vitreous can rapidly degrade or eliminate therapeutic molecules. Injectable hydrogel implants, which act as a reservoir, can allow for long-term drug delivery with a single injection into the eye, but still suffer due to the fast clearance of the released drugs when traversing the vitreous and random diffusion that leads to lower pharmaceutic efficacy. A combination with HA-covered nanoparticles, which can be released from the gel and more readily pass through the vitreous to increase the delivery of therapeutic agents to the retina, represents an advanced and elegant way to overcome some of the limitations in eye drug delivery. In this article, we developed hybrid PLGA-Dotap NPs that, due to their hyaluronic acid coating, can improve in vivo distribution throughout the vitreous and delivery to retinal cells. Moreover, a hydrogel implant was developed to act as a depot for the hybrid NPs to better control and slow their release. These results are a first step to improve the treatment of retinal diseases by protecting and transporting the therapeutic treatment across the vitreous and to improve treatment options by creating a depot system for long-term treatments

    Microfluidic technology for the production of hybrid nanomedicines

    Get PDF
    Microfluidic technologies have recently been applied as innovative methods for the production of a variety of nanomedicines (NMeds), demonstrating their potential on a global scale. The capacity to precisely control variables, such as the flow rate ratio, temperature, total flow rate, etc., allows for greater tunability of the NMed systems that are more standardized and automated than the ones obtained by well-known benchtop protocols. However, it is a crucial aspect to be able to obtain NMeds with the same characteristics of the previously optimized ones. In this study, we focused on the transfer of a production protocol for hybrid NMeds (H-NMeds) consisting of PLGA, Cholesterol, and Pluronic® F68 from a benchtop nanoprecipitation method to a microfluidic device. For this aim, we modified parameters such as the flow rate ratio, the concentration of core materials in the organic phase, and the ratio between PLGA and Cholesterol in the feeding organic phase. Outputs analysed were the chemico–physical properties, such as size, PDI, and surface charge, the composition in terms of %Cholesterol and residual %Pluronic® F68, their stability to lyophilization, and the morphology via atomic force and electron microscopy. On the basis of the results, even if microfluidic technology is one of the unique procedures to obtain industrial production of NMeds, we demonstrated that the translation from a benchtop method to a microfluidic one is not a simple transfer of already established parameters, with several variables to be taken into account and to be optimized

    Mortality risk according to different clinical characteristics of first episode of liver decompensation in cirrhotic patients: a nationwide, prospective, 3-year follow-up study in Italy.

    Get PDF
    OBJECTIVES: The occurrence of decompensation marks a crucial turning point in the course of cirrhosis. The purpose of this study was to assess the risk of mortality according to the clinical characteristics of first decompensation, considering also the impact of acute-on-chronic liver failure (AoCLF). METHODS: We conducted a prospective nationwide inception cohort study in Italy. Decompensation was defined by the presence of ascites, either overt or detected by ultrasonography (UD), gastroesophageal variceal bleeding (GEVB), and hepatic encephalopathy (HE). AoCLF was defined according to the Asian Pacific Association for the Study of the Liver criteria. Multivariable Cox proportional hazards regression was used to analyze the risk of failure (death or orthotopic liver transplantation (OLT)). RESULTS: A total of 490 consecutive cirrhotic patients (314 males, mean age 60.9±12.6 years) fulfilled the study criteria. AoCLF was identified in 59 patients (12.0%). Among the remaining 431 patients, ascites were found in 330 patients (76.6%): in 257 (77.8%) as overt ascites and in 73 (22.2%) as UD ascites. GEVB was observed in 77 patients (17.9%) and HE in 30 patients (7.0%). After a median follow-up of 33 months, 24 patients underwent OLT and 125 died. The cumulative incidence of failure (death or OLT) after 1, 2, and 3 years was, respectively, 28, 53, and 62% in patients with AoCLF; 10, 18, and 25% in patients with UD ascites; 17, 31, and 41% in patients with overt ascites; and 8, 12, and 24% in patients with GEVB (P<0.0001). CONCLUSIONS: AoCLF is responsible for a relevant proportion of first decompensation in cirrhotic patients and is associated with the poorest outcome. Patients with UD ascites do not have a negligible mortality rate and require clinical monitoring similar to that of patients with overt ascites

    Randomised controlled trial comparing efficacy and safety of high versus low Low-Molecular Weight Heparin dosages in hospitalized patients with severe COVID-19 pneumonia and coagulopathy not requiring invasive mechanical ventilation (COVID-19 HD): a structured summary of a study protocol.

    Get PDF
    To assess whether high doses of Low Molecular Weight Heparin (LMWH) (i.e. Enoxaparin 70 IU/kg twice daily) compared to standard prophylactic dose (i.e., Enoxaparin 4000 IU once day), in hospitalized patients with COVID19 not requiring Invasive Mechanical Ventilation [IMV], are: a)more effective in preventing clinical worsening, defined as the occurrence of at least one of the following events, whichever comes first: 1.Death2.Acute Myocardial Infarction [AMI]3.Objectively confirmed, symptomatic arterial or venous thromboembolism [TE]4.Need of either: a.Continuous Positive Airway Pressure (Cpap) or Non-Invasive Ventilation (NIV) orb.IMV in patients who at randomisation were receiving standard oxygen therapy5.IMV in patients who at randomisation were receiving non-invasive mechanical ventilationb)Similar in terms of major bleeding risk TRIAL DESIGN: Multicentre, randomised controlled, superiority, open label, parallel group, two arms (1:1 ratio), in-hospital study
    • …
    corecore