14 research outputs found

    Quantifying resistance and resilience to local extinction for conservation prioritization

    Get PDF
    This is the final version. Available on open access from Ecological Society of America via the DOI in this recordSpecies-focused conservation planning is often based on reducing local extinction risk at key sites. However, with increasing levels of habitat fragmentation and pressures from climate change and overexploitation, surrounding landscapes also influence the persistence of species populations, and their effects are increasingly incorporated in conservation planning and management for both species and communities. Here, we present a framework based on metapopulation dynamics in fragmented landscapes, for quantifying the survival (resistance) and reestablishment of species populations following localized extinction events (resilience). We explore the application of this framework to guide the conservation of a group of threatened bird species endemic to papyrus (Cyperus papyrus) swamps in East and Central Africa. Using occupancy data for five species collected over two years from a network of wetlands in Uganda, we determine the local and landscape factors that influence local extinction and colonization, and map expected rates of population turnover across the network to draw inferences about the locations which contribute most to regional resistance and resilience for all species combined. Slight variation in the factors driving extinction and colonization between individual papyrus birds led to species-specific differences in the spatial patterns of site-level resistance and resilience. However, despite this, locations with the highest resistance and/or resilience overlapped for most species and reveal where resources could be invested for multi-species persistence. This novel simplified framework can aid decision making associated with conservation planning and prioritization for multiple species residing in overlapping, fragmented habitats; helping to identify key sites that warrant urgent conservation protection, with consideration of the need to adapt and respond to future change. This article is protected by copyright. All rights reserved.Natural Environment Research Council (NERC)The Explorers ClubBritish Ornithologists’ UnionRoyal Geographic SocietyJohn Muir TrustGilchrist Educational Trus

    H2S biosynthesis and catabolism: new insights from molecular studies

    Get PDF
    Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissue

    Mapping Complex Coastal Wetland Mosaics In Gabon for Informed Ecosystem Management: Use of Object-Based Classification

    No full text
    Wetlands of coastal Gabon provide many ecosystems services including flood protection, water purification and wildlife habitat. Effective sustainable management of this coastal zone is hindered by a lack of accurate wetland maps. Here we describe a novel method used to map the wetland ecosystems of nearly 100 000 km2 of wetland and upland habitat mosaic in the delta of the Ogooué River using an object‐based classification of optical and radar satellite imagery based on training data collected from unmanned aerial vehicle and a post‐classification accuracy assessment using helicopter‐based video. We identified 15 land cover classes, of which nine were wetland. A stratified random sample accuracy assessment of the final classification yielded an overall accuracy of 0.80. Despite the important role that wetland habitats play for wildlife and ecosystem functioning across the region, our results indicate these wetlands cover only 22% of the project area. As expected, most of the wetland habitats are found close to major water bodies, including the Ogooué River, estuaries near the cities of Libreville and Port Gentil and coastal lagoons to the south of these cities. When considering the six Wetlands of International Importance designated under the Ramsar Convention within the project area, only 33% of mapped wetlands fall within the Ramsar site boundaries and only 10% of mapped wetlands fall within protected areas. Furthermore, within the Ramsar sites, only 31% of the land cover was classified as wetland. In order to better manage these wetland resources, more effective Ramsar boundaries would include the extensive wetland habitats found along the coast from Port Gentil south to Loango National Park. These data are now available for managers to improve wetland management within designated Ramsar sites and improving protection designations for vulnerable habitats, for example by protecting wetland connectivity and other ecosystem processes
    corecore