27 research outputs found

    Numerical flow calculations in rotary positive-displacements machines

    Get PDF

    The influence of chemistry inhomogeneity on microstructure development and residual stress

    Get PDF
    The chemistry distribution is of importance in the welding process. By varying the chemical composition, the evolution of microstructure and the residual stress change correspondingly. To examine the effect of chemistry, a three-dimensional metallo-thermo-mechanical model is created. The model is established according to a bead-on-plate welding experiment. Samples of S700 steel are manufactured by gas metal arc welding (GMAW). In total, three welds with three heat inputs were conducted so that different chemistries are obtained. The final weld geometry and the uniform chemistry in the fusion zone (FZ) are predicted by the software SimWeld. The parameters in the double ellipsoidal heat source are also calibrated by SimWeld. An inhomogeneous chemistry field is created using the data predicted by SimWeld and the chemical composition of base material (BM), and is further imported to the coupled model by writing user subroutine in ABAQUS. The metallurgical algorithm is implemented in the same way for calculating the phase volume fraction using both the homogeneously and the inhomogeneously distributed chemistry fields. After the temperature and microstructure are determined, the mechanical analysis is conducted using linearly interpolated material properties. Finally, the results of microstructure distribution and the residual stress predicted for homogeneous and inhomogeneous field are compared to clarify the influence of chemical composition

    Absent expansion of AXIN2+ hepatocytes and altered physiology in Axin2CreERT2 mice challenges the role of pericentral hepatocytes in homeostatic liver regeneration

    Get PDF
    Background & Aims: Mouse models of lineage tracing have helped to describe the important subpopulations of hepatocytes responsible for liver regeneration. However, conflicting results have been obtained from different models. Herein, we aimed to reconcile these conflicting reports by repeating a key lineage-tracing study from pericentral hepatocytes and characterising this Axin2CreERT2 model in detail. Methods: We performed detailed characterisation of the labelled population in the Axin2CreERT2 model. We lineage traced this cell population, quantifying the labelled population over 1 year and performed in-depth phenotypic comparisons, including transcriptomics, metabolomics and analysis of proteins through immunohistochemistry, of Axin2CreERT2 mice to WT counterparts. Results: We found that after careful definition of a baseline population, there are marked differences in labelling between male and female mice. Upon induced lineage tracing there was no expansion of the labelled hepatocyte population in Axin2CreERT2 mice. We found substantial evidence of disrupted homeostasis in Axin2CreERT2 mice. Offspring are born with sub-Mendelian ratios and adult mice have perturbations of hepatic Wnt/β-catenin signalling and related metabolomic disturbance. Conclusions: We find no evidence of predominant expansion of the pericentral hepatocyte population during liver homeostatic regeneration. Our data highlight the importance of detailed preclinical model characterisation and the pitfalls which may occur when comparing across sexes and backgrounds of mice and the effects of genetic insertion into native loci. Impact and implications: Understanding the source of cells which regenerate the liver is crucial to harness their potential to regrow injured livers. Herein, we show that cells which were previously thought to repopulate the liver play only a limited role in physiological regeneration. Our data helps to reconcile differing conclusions drawn from results from a number of prior studies and highlights methodological challenges which are relevant to preclinical models more generally

    MYC regulates fatty acid metabolism through a multigenic program in claudin-low triple negative breast cancer

    Get PDF
    Background: Recent studies have suggested that fatty acid oxidation (FAO) is a key metabolic pathway for the growth of triple negative breast cancers (TNBCs), particularly those that have high expression of MYC. However, the underlying mechanism by which MYC promotes FAO remains poorly understood. Methods: We used a combination of metabolomics, transcriptomics, bioinformatics, and microscopy to elucidate a potential mechanism by which MYC regulates FAO in TNBC. Results: We propose that MYC induces a multigenic program that involves changes in intracellular calcium signalling and fatty acid metabolism. We determined key roles for fatty acid transporters (CD36), lipases (LPL), and kinases (PDGFRB, CAMKK2, and AMPK) that each contribute to promoting FAO in human mammary epithelial cells that express oncogenic levels of MYC. Bioinformatic analysis further showed that this multigenic program is highly expressed and predicts poor survival in the claudin-low molecular subtype of TNBC, but not other subtypes of TNBCs, suggesting that efforts to target FAO in the clinic may best serve claudin-low TNBC patients. Conclusion: We identified critical pieces of the FAO machinery that have the potential to be targeted for improved treatment of patients with TNBC, especially the claudin-low molecular subtype

    The pathogenesis of mesothelioma is driven by a dysregulated translatome.

    Get PDF
    Funder: Department of HealthMalignant mesothelioma (MpM) is an aggressive, invariably fatal tumour that is causally linked with asbestos exposure. The disease primarily results from loss of tumour suppressor gene function and there are no 'druggable' driver oncogenes associated with MpM. To identify opportunities for management of this disease we have carried out polysome profiling to define the MpM translatome. We show that in MpM there is a selective increase in the translation of mRNAs encoding proteins required for ribosome assembly and mitochondrial biogenesis. This results in an enhanced rate of mRNA translation, abnormal mitochondrial morphology and oxygen consumption, and a reprogramming of metabolic outputs. These alterations delimit the cellular capacity for protein biosynthesis, accelerate growth and drive disease progression. Importantly, we show that inhibition of mRNA translation, particularly through combined pharmacological targeting of mTORC1 and 2, reverses these changes and inhibits malignant cell growth in vitro and in ex-vivo tumour tissue from patients with end-stage disease. Critically, we show that these pharmacological interventions prolong survival in animal models of asbestos-induced mesothelioma, providing the basis for a targeted, viable therapeutic option for patients with this incurable disease

    Abstract 1441 : MYC expression promotes lipid metabolism and metabolic plasticity in human mammary epithelial cell

    Get PDF
    MYC is one of the most commonly mutated and highly amplified oncogenes in human breast cancer. MYC amplifications occur most frequently in triple-negative breast cancers (TNBCs). TNBCs can be divided into two molecular subtypes: basal-like and claudin-low breast cancers. These cancers tend to be extremely aggressive and are strongly associated with disease recurrence, poor prognosis and high mortality. In particular, claudin-low tumors are classified by a loss of tight junctions and cell-to-cell contacts and an enrichment for genes associated with an epithelial-to-mesenchymal transition (EMT) and mammary stem cells (also known as tumor-initiating cells). Despite the high level of disease severity, there are no targeted therapies for claudin-low TNBCs. To address this unmet need, we utilized human mammary epithelial cells (HuMECs) that express oncogenic levels of MYC and a mutant MYC (T58A) to characterize the behavioral and metabolic changes that occur during the formation of MYC-driven breast cancers. We found that MYC regulates the expression of genes associated with cell stemness, EMT, lipid metabolism, and calcium (Ca2+) signaling and that the expression of this gene signature promotes cell growth, survival, migration, and metabolic plasticity. The gene signature of MYC-expressing HuMECs highly correlates with the gene signature of claudin-low breast cancers, therefore highlighting the relevance of our HuMEC model to human claudin-low breast cancer. We found the major drivers underlying the MYC-dependent changes in cell behavior to be stimulation of Ca2+ signaling and strong activation of lipid metabolism. Ca2+ signaling is stimulated through the MYC-dependent repression of Ca2+ efflux mechanisms; elevated cytosolic Ca2+ then consequently stimulates a Ca2+/calmodulin kinase kinase 2 (CAMKK2)/AMPK signaling axis that activates fatty acid scavenging and transport, as well as β-oxidation. Enhanced lipid metabolism thereby provides the necessary biomass (fatty acids) for phospholipid biosynthesis and energy (ATP) to support the metabolically demanding processes of cell growth, proliferation, and migration. In all, our findings provide a strong rationale for targeting lipid metabolism and the Ca2+/CAMKK2/AMPK signaling axis in MYC-driven, and potentially claudin-low, breast cancers
    corecore