95 research outputs found

    Flat Spacetime Vacuum in Loop Quantum Gravity

    Full text link
    We construct a state in the loop quantum gravity theory with zero cosmological constant, which should correspond to the flat spacetime vacuum solution. This is done by defining the loop transform coefficients of a flat connection wavefunction in the holomorphic representation which satisfies all the constraints of quantum General Relativity and it is peaked around the flat space triads. The loop transform coefficients are defined as spin foam state sum invariants of the spin networks embedded in the spatial manifold for the SU(2) quantum group. We also obtain an expression for the vacuum wavefunction in the triad represntation, by defining the corresponding spin networks functional integrals as SU(2) quantum group state sums.Comment: 20 pages, 6 figure

    Harmonic forcing of an extended oscillatory system: Homogeneous and periodic solutions

    Full text link
    In this paper we study the effect of external harmonic forcing on a one-dimensional oscillatory system described by the complex Ginzburg-Landau equation (CGLE). For a sufficiently large forcing amplitude, a homogeneous state with no spatial structure is observed. The state becomes unstable to a spatially periodic ``stripe'' state via a supercritical bifurcation as the forcing amplitude decreases. An approximate phase equation is derived, and an analytic solution for the stripe state is obtained, through which the asymmetric behavior of the stability border of the state is explained. The phase equation, in particular the analytic solution, is found to be very useful in understanding the stability borders of the homogeneous and stripe states of the forced CGLE.Comment: 6 pages, 4 figures, 2 column revtex format, to be published in Phys. Rev.

    Creation and Reproduction of Model Cells with Semipermeable Membrane

    Full text link
    A high activity of reactions can be confined in a model cell with a semipermeable membrane in the Schl\"ogl model. It is interpreted as a model of primitive metabolism in a cell. We study two generalized models to understand the creation of primitive cell systems conceptually from the view point of the nonlinear-nonequilibrium physics. In the first model, a single-cell system with a highly active state confined by a semipermeable membrane is spontaneously created from an inactive homogeneous state by a stochastic jump process. In the second model, many cell structures are reproduced from a single cell, and a multicellular system is created.Comment: 11 pages, 7 figure

    Reaction-Diffusion System in a Vesicle with Semi-Permeable Membrane

    Full text link
    We study the Schloegl model in a vesicle with semi-permeable membrane. The diffusion constant takes a smaller value in the membrane region, which prevents the outflow of self-catalytic product. A nonequilibrium state is stably maintained inside of the vesicle. Nutrients are absorbed and waste materials are exhausted through the membrane by diffusion. It is interpreted as a model of primitive metabolism in a cell.Comment: 8 pages, 6 figure

    Breathing Current Domains in Globally Coupled Electrochemical Systems: A Comparison with a Semiconductor Model

    Full text link
    Spatio-temporal bifurcations and complex dynamics in globally coupled intrinsically bistable electrochemical systems with an S-shaped current-voltage characteristic under galvanostatic control are studied theoretically on a one-dimensional domain. The results are compared with the dynamics and the bifurcation scenarios occurring in a closely related model which describes pattern formation in semiconductors. Under galvanostatic control both systems are unstable with respect to the formation of stationary large amplitude current domains. The current domains as well as the homogeneous steady state exhibit oscillatory instabilities for slow dynamics of the potential drop across the double layer, or across the semiconductor device, respectively. The interplay of the different instabilities leads to complex spatio-temporal behavior. We find breathing current domains and chaotic spatio-temporal dynamics in the electrochemical system. Comparing these findings with the results obtained earlier for the semiconductor system, we outline bifurcation scenarios leading to complex dynamics in globally coupled bistable systems with subcritical spatial bifurcations.Comment: 13 pages, 11 figures, 70 references, RevTex4 accepted by PRE http://pre.aps.or

    Pentanary cross-diffusion in water-in-oil microemulsions loaded with two components of the belousov-zhabotinsky reaction

    No full text
    We measure cross-diffusion coefficients in a five-component system, an aerosol OT (AOT) water-in-oil microemulsion loaded with two constituents of the Belousov-Zhabotinsky (BZ) reaction (H2O/AOT/BZ1/BZ2/octane). The species BZ1 is either NaBr, an inhibitor of the BZ reaction, or ferroin, a catalyst for the reaction. As species BZ2, we choose Br2, an intermediate in the reaction. The cross-diffusion coefficients between BZ1 and BZ2 are found to be negative, which can be understood in terms of complexation between these species. Using a four-variable model for the BZ reaction, we find that the cross-diffusion coefficients measured here can lead to a noticeable shift in the onset of Turing instability in the BZ-AOT system
    • 

    corecore