1,829 research outputs found

    Two dimensional simulation of MOS transistors

    Get PDF

    IDS : an interactive design system for integrated circuits

    Get PDF

    IDS : an interactive design system for integrated circuits

    Get PDF

    An extractor for hierarchical symbolic layouts

    Get PDF

    Exact solution of a model DNA-inversion genetic switch with orientational control

    Full text link
    DNA inversion is an important mechanism by which bacteria and bacteriophage switch reversibly between phenotypic states. In such switches, the orientation of a short DNA element is flipped by a site-specific recombinase enzyme. We propose a simple model for a DNA inversion switch in which recombinase production is dependent on the switch state (orientational control). Our model is inspired by the fim switch in Escherichia coli. We present an exact analytical solution of the chemical master equation for the model switch, as well as stochastic simulations. Orientational control causes the switch to deviate from Poissonian behaviour: the distribution of times in the on state shows a peak and successive flip times are correlated.Comment: Revised version, accepted for publicatio

    Phase variation controls expression of Salmonella lipopolysaccharide modification genes by a DNA methylation-dependent mechanism

    Get PDF
    The O-antigen of Salmonella lipopolysaccharide is a major antigenic determinant and its chemical composition forms the basis for Salmonella serotyping. Modifications of the O-antigen that can affect the serotype include those carried out by the products of glycosyltransferase operons (gtr), which are present on specific Salmonella and phage genomes. Here we show that expression of the gtr genes encoded by phage P22 that confers the O1 serotype is under the control of phase variation. This phase variation occurs by a novel epigenetic mechanism requiring OxyR in conjunction with the DNA methyltransferase Dam. OxyR is an activator or a repressor of the system depending on which of its two binding sites in the gtr regulatory region is occupied. Binding is decreased by methylation at Dam target sequences in either site, and this confers heritability of the expression state to the system. Most Salmonella gtr operons share the key regulatory elements that are identified here as essential for this epigenetic phase variation

    Recovery of protein synthesis to assay DNA repair activity in transcribed genes in living cells and tissues

    Get PDF
    Transcription-coupled nucleotide excision repair (TC-NER) is an important DNA repair mechanism that protects against the negative effects of transcription-blocking DNA lesions. Hereditary TC-NER deficiencies cause pleiotropic and often severe neurodegenerative and progeroid symptoms. While multiple assays have been developed to determine TC-NER activity for clinical and research purposes, monitoring TC-NER is hampered by the low frequency of repair events occurring in transcribed DNA. ’Recovery of RNA Synthesis’ is widely used as indirect TC-NER assay based on the notion that lesion-blocked transcription only resumes after successful TC-NER. Here, we show that measuring novel synthesis of a protein after its compound-induced degradation prior to DNA damage induction is an equally effective but more versatile manner to indirectly monitor DNA repair activity in transcribed genes. This ‘Recovery of Protein Synthesis’ (RPS) assay can be adapted to various degradable proteins and readouts, including imaging and immunoblotting. Moreover, RPS allows real-time monitoring of TC-NER activity in various living cells types and even in differentiated tissues of living organisms. To illustrate its utility, we show that DNA repair in transcribed genes declines in aging muscle tissue of C. elegans. Therefore, the RPS assay constitutes an important novel clinical and research tool to investigate transcription-coupled DNA repair
    corecore