

An extractor for hierarchical symbolic layouts

Citation for published version (APA):
Bidlot, T., & Woude, van der, M. (1984). An extractor for hierarchical symbolic layouts. (Computing centre note;
Vol. 23). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1984

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/62f279c4-62ae-4dd4-8951-a7ef3e54901b

THE-RC 59994

December 1984

Eindhoven University of Technology

Computing Centre Note 23

An extractor for hierarchical symbolic

layouts

Authors: T. Bidlot and M. van der Woude

THE-RC 59994

TABLE OF CONTENTS

Abstract
1. Introduction.
2. Requirements.
3. Main algorithms ••
4. Calculation of capacitance.
S. Results.. •
6. Future extensions ••
7. References.

• page
• page
• page
• page
• page
• page
• page
• page

1
2
4
5
9

10
14
14

THE-RC 59994

Abstract

page 1

An outline of a circuit extractor is proposed, which can be used
for extracting VLSI circuits from a hierarchical symbolic layout
description. Use is made of an interface file in which the
interface between layout and circuit description is stored for
each hierarchical building block. The hierarchy of the circuit
description can be expanded partially or wholly to let the
extracted circuit description have the hierarchy as required by
the user. An outline of the algorithm on which the extractor is
based is discussed. "Results of a preliminary version are
presented.

THE-RC 59994

1. Introduction.

page 2

In this paper we propose a circuit extractor which is intended for
the extraction of circuits from hierarchical symbolic layout
descriptions. It is a well known fact that hierarchical design
methods offer great savings in time for the designer and result in
a reduction of processing time and storage use. However very often
what is called a 'hierarchical design method' is no more than a
hierarchical description method [2], because only an informal
hierarchy is used which has to be expanded as soon as exact
knowledge of the boundaries of the building bricks is required,
e.g. with design rule check and with circuit extraction. In our
layout design system we maintain a strictly formal hierarchy which
enables not only the designer but also computer programs to
consider hierarchical compound cell instances as independent units
which interact with the outside world only via a well defined
interface consisting of a domain and a set of terminals.
Hierarchical design rules preserve sufficient separation between
different layout components, such that parasitic effects are kept
below a harmless treshold. Since the layout description reflects
this hierarchy it is a simple task for a circuit extractor to
translate a layout description to a circuit description. All
layout components except wiring can be extracted straightforward
bye translating their layout description to the corresponding
circuit description. We will assume that the only parasitics that
cannot be discarded and that therefore have to be extracted by
geometric search, are the parasitic capacitances of the wiring to
the substrate. The same geometric search can provide the
interconnection pattern between the layout components.

The goals for the circuit extractor presented are to provide the
designer with a useful interactive tool with all the usual
properties of a circuit extractor. Because of its hierarchical
method it will require very few computer resources. Compared to
other hierarchical extractors, see e.g. [4] its new feature is
that the interface of a compound cell between its layout and
circuit description may, but need not, be prescribed by the user,
in order to the user or a verification program to compare
extracted circuit descriptions with other descriptions, e.g. those
used previously for simulation. If the interfaces where not the
same, i.e. parameter positions do not correspond, this is not so
easy.

In what we call a hierarchical layout a compound cell instance may
be regarded as a building brick, consisting of a domain, which
defines a forbidden region, and a set of terminals at which
interconnections to the interior of that cell can be made by
overlap and by abutment. In the NMOS process, which we shall
assume, the interconnections are restricted to the metal, poly and
diffusion layers. The domain may consist of several, not
necessarily overlapping, rectangles in these layers. To design

THE-RC 59994 page 3

such a layout we use an editor [1] which can operate in a symbolic
and in a geometric mode. In the symbolic mode compound cells may
be designed within a fixed grid. These symbolic compound cells are
composed of the following symbols:

rectangular pieces of wiring
rectangular via cells
transistors with rectangular active area
instances of previously defined compound cells
instances of geometric cells

In the geometric mode, which is primarily intended for the lower
levels in the design hierarchy, geometric cells may be build up of
any combination of rectangles and previously defined cells.

The definitions of a cell in the layout description are marked as
follows:

s (symbolic compound cell)
g (geometric cell)

The definitions of transistor and via symbols are marked as:

et (enhancement transistor)
dt (depletion transistor)
vI (metal/diffusion via)
v2 (polysilicon/diffusion via)
v3 (metal/plysilicon via)

Within the extractor symbolic compound cells or shortly compound
cells are considered as non leafcells. All other symbols are
considered either as leaf cells (marked g, et, dt) or as wiring
(marked vI, v2, v3 or not marked). It is assumed that the output
of the extractor is a description for SPICE or another circuit
analysis program. Such a description may have the same
hierarchical structure as the layout or it may be (partially)
expanded.

Instances of leafcells in the layout description marked g are
translated to subcircuit calls whose definition has to be provided
by the user or by a geometric extraction program. Via cells and
pieces of wiring are translated to nets which have parasitic
capacitance to the substrate determined by the total effective
area and the perimeter (to include sidewall capacitances).
Transistor cells are translated to transistor calls with length
and width as geometric parameters. Additional parameters, e.g. to
describe the source/drain geometry may be extracted if desired.(A
SPICE MOSFET may have up to 8 geometric parameters). The user has
to provide two model descriptions one for enhancement and one for
depletion transistors. The definition of a symbolic compound cell
is inspected by the extractor and either translated to a
subcircuit definition or expanded to a lower hierarchical level if

THE-RC 59994

the user specifies so.

page 4

We will assume that the layout description has passed a design
rule che~ker. so overlap or abutment is always sufficient to make
valid contact and separation rules are always satisfied.

2. Requirements.

We require that the extractor can be used highly interactive. The
user should be able to specify:

- Which output language (in case more than one output languages
are supported).
Extraction with or without parasitic capacitances.
Compound cells to be extracted. Only the highest hierarchical
levels need be specified. If the extractor discovers a call to
a lower level compound cell this one has to be extracted "on
the fly".
Compound cells to be expanded. A user may wish to consider the
circuit description of a design with another hierarchy than the
layout description. This can happen e.g. if the layout designer
has added one or more additional hierarchical levels for ease
of manipulation. To compare the extracted circuit to the input
circuit for the layout design, these additional hierarchical
levels should be expanded, i.e. replaced by their contents.
Expansion is also required when the simulation package does not
support hierarchical input.

Compound cells to be considered as leaf cell. A user
to specify compound cells as leaf cell. e.g.
subcircuit definition is already present.

may wish
if their

To guide the extractor in producing a circuit description the user
should be able to specify the layout/circuit interface of a
compound cell. This consists of:

The compound cell name and the corresponding subcircuit name.
In most cases it will suffice to use as a subcircuit name the
name of the corresponding name of the compound cell definition.
This will be the default case. However in some cases there may
be reasons to deviate from this convention, e.g. when more than
one layout cell correspond to the same subcircuit.

- A list of layout terminals with for each layout terminal the
corresponding subcircuit contact. Note that terminals may be
internally interconnected. this implies that more than one
terminal may correspond to the same subcircuit contact. If the
layout description does not contain names for some terminals
then the unnnamed terminals can only be characterized by either
their position in the data structure or by their geometric

THE-RC 59994 page 5

position. The user may (but need not) wish to specify the
terminal correspondence. If e.g. a subcircuit definition has to
be used it is required that the terminals correspond with
subcircuit contacts in a prescribed way.

For convenience of the user the layout/circuit interface should be
stored as a file, the interface file, which is maintained by the
extractor. By comparing timestamps the extractor can decide
whether a stored interface description of a compound cell is still
valid.

The output of the extractor has to be a textfile containing a
series of one or more subcircuit definitions in the input language
specified by the user. From the requirments mentioned it follows
that the extractor can be operated from a terminal without
graphics facilities and that it does not need to modify the input
layout file.

3. Main algorithms.

Some details of the algorithms depend on the desired output
format. For simplicity we will assume that a SPICE description has
to be produced. By means of a dialogue with the user the following
lists are created:

EXTRACT COMPOUND LIST

This list contains compounds to be extracted in order of non­
decreasing hierarchical level. A compound is represented by the
pointer to the start of its definition in the layout file,
together with a boolean EXPAND which is true when the compound has
to be expanded.

All instances of compound cells met during extraction that do not
appear in EXTRACT_COMPOUND_LIST will be considered as leaf cells.

SUBCIRCUIT LIST

This list contains at the end of the dialogue a record for each
leaf cell. During the extraction process it is extended with
descriptions of subcircuits that are extracted. The description of
leaf cells is obtained from their interface as it is present in
the interface file. The description of a subcircuit consists of:

NAME
NFORMN ­
NLOCN

subcircuit name
the formal nets are numbered 1 •• NFORMN
the local nets are numbered NFORMN + 1
NLOCN (NLOCN = 0 for leaf cells)

NFORMN +

The following lists, that are empty for leaf cells, are also part

THE-RC 59994 page 6

of a subcircuit description. They are constructed for cells to be
extracted during the extraction process.

WIRING LIST- contains for each net the area and perimeter in each
of the layers

SCALL LIST - contains for each subcircuit call a pointer PSDEF to
the definition of the corresponding subcircuit in
SUBCIRCUIT LIST and a pointer PPAR to PARAM LIST t an
array which contains for each call a list-of actual
net parameters

TCALL LIST - has an entry for each transistor call containing
transistor type (enh. or depl.)t net parameters and
geometric parameters

EXPAND boolean which is true when the subcircuit has to be
expanded

If it appears that one of the leafcells does not have a valid
interface in the interface file or if the user wants to change itt
the interface will be interactively established or updated and
stored in the interface file. During the extraction process the
interface file is updated in the same way with the interfaces of
the compounds in EXTRACT_COMPOUND_LIST.

The extraction process may be described by the following program
(Algori thm 1).
PROCEDURE EXTRACT (EXTRACT COMPOUND LIST t

SUBCIRCUIT LIST -);

BEGIN
WHILE EXTRACT COMPOUND LIST NOT FINISHED DO

GET (COMPOUND from EXTRACT COMPOUND LIST);
CREATE (at pointer PSUB a new SUBCIRCUIT record);

WITH COMPOUND t PSUB DO

Construct employs a SCANLINE algorithm [3] to determine the
nets and their geometric properties. It is taken into account
that nets may be interconnected by overlap t abutment and
with vias and also via internal interconnections of
subcompound instances which can be detected from the
interface description.

}

ESTABLISH interface and store it;

As soon as the wiring has been determined it is possible to
establish the interface t since now it is known which sets of
formal terminals are interconnected within the compound and

THE-RC 59994 page 7

hence correspond to the same net parameter.
is not present a default interface will be
user has the possibility to adapt the
wishes.

}

If the interface
generated. The

interface to his

ADJUST (according to interface:
NAME, WIRING_LIST, SCALL_LIST, TCALL_LIST);

END {WITH};

APPEND (to SUBCIRCUIT_LIST, record PSUB);

IF NOT PSUB.EXPAND THEN
EXTRACT_SUBCIRCUIT (PSUB)

FI;
END {WHILE}

END {EXTRACT};

Algorithm 1.

The procedure EXTRACT SUBCIRCUIT is described below (Algorithm 2),
it uses a recursive-procedure EXTRACT BODY which is described as
Algorithm 3.

PROCEDURE EXTRACT SUBCIRCUIT (PSUB);

BEGIN
WITH PSUB DO

{write heading}
WRITE('.SUBCKT', NAME, 1 TO NFORMN);

LACTW : == NFORMN + NLOCN;

FOR I :== 1 TO LACTW DO
ACTW [I] : == I;
CAPACITY [I] :'" CAP_FUN (WIRE_LIST [I])

END {FOR};

NWUSED :== LACTW; { NWUSED is # of wires used}
NSC :== 0; { NSC is # of subcircuit calls extracted}
NTC := 0; { NTC 1s # of transistor calls extracted}

EXTRACT_BODY (ACTW, CAPACITY, PSUB, NSC, NTC, NWUSED);

{write capacity}
FOR I : == 1 TO NWUSED DO

WRITE CAPACITANCE (CAPACITY [I));

THE-RC 59994

END {FOR};
{write end}
WRITE (' .ENDS' NAME) ;

END {WITH}
END {EXTRACT_SUBCIRCUIT};

Algorithm 2.

page 8

PROCEDURE EXTRACT BODY (ACTW, CAP, PSUB, NSC, NTC, NWUSED);

BEGIN
WITH PSUB DO

WHILE TCALL LIST NOT FINISHED DO
{ write transistor call}
NTC :=NTC +1;
WRITE TCALL (next element from TCALL_LIST);

END {WHiLE};

WHILE SCALL LIST NOT FINISHED, WITH NEXT ELEMENT DO

{fill ACTWI with actual numbers of formal wires}
FOR I : = 1 TO PSDEF .NFORMN DO

ACTWI [I] := ACTW [PARAM LIST [PPAR + Ill;
END {FOR}; -
IF NOT EXPAND THEN {write call}

NSC := NSC + 1;
WRITE ('X', NSC, FOR I := 1 TO PSDEF .NFORMN DO

ACTWI [I], NAME);
ELSE

{assign actual numbers to local nets }
FOR I := 1 TO PSDEF.NLOCN DO

NWUSED := NWUSED + 1;
ACTWI [PSDEF.NFORMN + I] := NWUSED + 1;
CAPACITY [NWUSEOJ := CAP FUN
(PSDEF.WIRE LIST [I+PSDEF~NFORMN])

END {FOR}; -
{add capacity to actual nets}
FOR I := 1 TO PSOEF.NFORMN DO

CAPACITY [ACTWI [I]] := CAPACITY [ACTWI [IJ] +
CAP_FUN (PSDEF •WIRE_LIST [I]);

END {FOR}

{extract body}
EXTRACT BODY (ACTWl, CAP, PSDEF. NSC, NTC, NWUSED);

FI
END {WHILE}

END {WITH}
END {EXTRACT_BODY};

THE-RC 59994

Algorithm 3.

4. Calculation of capacitance.

page 9

The parasitic capacitance is calculated from the geometric data in
WIRE LIST by the function CAP FUN. This function calculates the
sum of the area capacitance and the sidewall capacitance of a wire
in each of the layers in which the wire is present. The geometric
data area and perimeter for each layer are calculated during the
SCANLlNE search. Since only capacitance to the bulk is calculated,
account has to be taken of wires of the same net on top of each
other [4]. In that case the capacitance of the top wire to bulk
will be assumed zero.

Note that, since always one hierarchical level at a time is
considered, it is not possible to make this correction if wires of
the same net are on top of each other at different levels of the
hierarchy. So if e.g. a metal linepiece runs across an instance of
a compound call just on top of a diffusion line piece to which it
is connected via the terminals than the capacitance of both pieces
will be added to the capacitance of the net, resulting in a too
large parasitic capacitance. When calculating capacitances the
parts of wires that overlap with actual contacts are ignored. So
if a wire connects a formal contact (terminal of the definition)
to an actual contact (terminal of an instance) then the capacity
of this wire is calculated as if it consists of the area of the
formal contact and all area outside the actual contact. Area and
perimeter of actual contacts are assumed to belong to the internal
of the instance.

w

i••t.a!!cC
.ti CL call

fig. 4.1 Calculation of wire area and perimeter.
Area w * (11 +12)
Perimeter = (w + 11 + 12) * 2

THE-RC 59994

E.g. in fig. 4.1 the capacitance is calculated as:

C = ca * w * (11 +12) + Cb * (11 + 12 + w) * 2

page 10

With Ca and Cb the capacitance per unit area, resp. per unit
perimeter. With this calculation the abutting part of the
perimeter will be counted twice, while it is not part of the
perimeter. The result is a capacitance which is slightly too
large. We could avoid this error by always omitting the abutting
part of terminals.

Other capacitances.

It is also possible to extend the program with calculations of
other types of parasitic capacitances. However our approach does
not admit us to calculate coupling capacitances between nets at
different hierarchical level, since these capacitances disturb the
hierarchy. If this kind of parasitics would effect circuit
behaviour seriously, the only possibility is to forbid wires
across the domains of compounds and to make design rules for
domain separation and for separation of domains and layout
elements so conservative that coupling may be neglected.

5. Results.

The method outlined above has been implemented provisionally in a
Fortran program, no recursion is used and no use is made of
interface files. Further sidewall capacitances are ignored. Of
this tentative program we present some results. In fig. 5.1 a
circuit of a D-flipflop is shown consisting of6 NOR-gates.

THE-RC 59994 page 11

........... _-,.....-.
• I

S .~'.....--_&-""'I I
yo I

8 • Xl ~ I
I - I
~ ~9t
I li I
I _...... I i- -- - _
ill I - I
r---..... rl.---. f X ~ I

R ,;.et-......-lli-l-....;...--t I---1-_.... If ~ I

6 t__ liINItJ I I - I
I~ I
: ,....- I

------ I 1
f I '-
I t I XI I

C,................-+-01......-:--1 X' ~_..~lJ=--;--:-"'1 S i
1. ; L'-_: L __iiMIII

I .- -... •
I - I....

a..-- I --t X6"~ I
~ • I

ziltf I ~ I.. L __~

fig. 5.1 Circuit diagram of a D-flipflop with 6 NOR-gates.

The layout of this circuit has been constructed with our
hierarchical layout editor. For ease of manipulation the hierarchy
was extended by combining 2 NOR-gates to a building brick of type
NOR2. The hierarchical layout is shown in fig. 5.2

THE-RC 59994 page 12

D/~It-- -::1=-=--=-~"-IO::-l-I;-_-_-_-_-_-_-l"~+I--I-l""":-_-_--1r.IO::-t1:-:--=--_- -_-_-_-_----1--410t-------t-l

- - 1r--......;~H~fo4-l-Ii - - -EtfJ-- - -I i
q: : I: :' Lf
: I , 1 I

b I~:I G=P I;
, i I I I I

~ IIQU {l .--°......1 ~---. .,ollS1\- d b~ rl:
w..~_fl- .,J:1i::r*t.\-lH..,!. I_ -_ ... __1...-' I I. __ _ .J.1;-....-lH,J,

.~ ~
I0 It----II-I---+-+-_-I-I-__--I-I-I C

rC t---CJ--..I1 1 1 : 01
[01t----......---....---------.....'-If 0 1 ~t---[....o+-,:~~~_-_++__....rc

a '1..i 'LJ'p&.I-----+-+----t

fig. S.2 Hierarchical layout of n-flipflop using
3 building bricks of type NOR2.

The layout of a NOR2 block and of a NOR block is shown in fig.
5.3.

THE-RC 59994 page 13

IN

IN

IN

ouTVDO
NOB. "ATE ,nr.,

~

Oil1----- f--J I0 I I
r-- I

0r 1 I0
I ~

II 1 Ir----10-- - _I
r if I ,......

• 0I ! I0 I I r--

I I \ I I 0I --L--D
t

: I--

l

fig. 5.3 Detailed layout of a NOR2 building brick
consisting of two NOR-gates.

The result of the extractor is the following SPICE description, in
which the NOR2 compounds have been expanded:

.SUBCKT NOR 1 23456
Cl 1 0 23.0FF
C2 2 0 36.7FF
C3 3 0 16.9FF
C4 4 0 35.4FF
C5 5 0 10.8FF
HI 4 4 I 0 NMOSTD w= 6U, L= 24U
H2 4 3 2 0 NMOSTE w= 6U, 1= 6U
H3 4 6 2 0 NMOSTE w= 6U, 1= 6ll
H4 2 5 4 a NMOSTE W= 6U, L= 6U
.ENDS NOR

.SUBCKT FLIPFLOP 1 2 3 4 5 6 7 8
C1 1 0 121.0FF
C2 2 0 14.0FF
C3 3 0 14.0FF
C4 4 0 14.0FF
C5 5 a 123.8FF
C6 6 a 86.8FF
C7 7 0 6.8FF
C8 8 0 70.0FF
ClO 10 a 88.0FF
ell 11 0 61.6FF

Xl 3 4 9 10 1 6 NOR

THE-RC 59994 page 14

X2 3 2 10 9 8 11 NOR
X3 3 4 7 5 12 6 NOR
X4 3 2 5 7 8 10 NOR
X5 3 4 12 11 5 6 NOR
X6 3 2 11 12 10 1 NOR
.ENDS FLIPFLOP

The extracted circuit
parasitic capacitances.
factor 2 slower.

6. Future extensions.

has
The

been simulated with and without
version with parasitics was about a

The extractor outlined above can easily be extended with a circuit
verifier. To be able to verify extracted circuits with existing
descriptions we have to provide with the interface description the
classes of logically equivalent parameters and groups of
parameters which are logically equivalent [5). The extraction of
parasitics can be extended to resistors and coupling capacitances
and others, provided the hierarchy is not disturbed. Further it is
desired to extend the extractor with the possibility of the
extraction of geometric cells.

7. References.

1. A. H. D. Bidlot e.o., "Editor for Hierarchical Structured
Layouts of large Integrated Circuits (VLSI-circuits)",
Proceedings of the NGI-SION symposium, Amsterdam, 16-17 april
1984, pp. 151-160.

2. C. Niessen, "The role of CAD tools in VLSI design
methodology", ESSCIRC Digest of Technical Papers, Freiburg,
Sept. 22-24, 1981, pp. 75-86.

3. Bentley J. L., Haken D. and Hon R. W., "Statistics on VLSI
Designs", Report CMV-CS-80-111, Dept. of Comp. Science
carnegie Mellon University, Pittsburgh, April 17, 1980.

4. Tarolli G. M. and Herman W. J. , "Hierarchical Circuit
Extraction with detailed parasitic capacitance", proceedings
20th Design Automation Conference, 1983, pp. 337-345.

5. Losleben P. and Thomson K., "Topological
Circuits", Proceedings of the 16th
Conference, June 1979, pp. 461-473.

Analysis for VLSI
Design Automation

	Voorblad

	Inhoud

	Abstract

	Hoofdstuk 1

	Hoofdstuk 2

	Hoofdstuk 3

	Hoofdstuk 4

	Hoofdstuk 5

	Hoofdstuk 6 en 7

