20 research outputs found

    Streamlined and robust stage-specific profiling of gametocytocidal compounds against Plasmodium falciparum

    Get PDF
    Malaria elimination is dependent on the ability to target both the pathogenic and transmissible stages of the human malaria parasite, Plasmodium falciparum. These forms of the parasite are differentiated by unique developmental stages, each with their own biological mechanisms and processes. These individual stages therefore also respond differently to inhibitory compounds, and this complicates the discovery of multistage active antimalarial agents. The search for compounds with transmission-blocking activity has focused on screening for activity on mature gametocytes, with only limited descriptions available for the activity of such compounds on immature stage gametocytes. This therefore poses a gap in the profiling of antimalarial agents for pan-reactive, multistage activity to antimalarial leads. Here, we optimized an effective and robust strategy for the simple and cost-effective description of the stage-specific action of gametocytocidal antimalarial compounds.The South African Medical Research Council Strategic Health Innovation Partnership and the Department of Science and Innovation South African Research Chairs Initiative, administered through the South African National Research Foundation; a BMGF Grand Challenges Africa grant; the Medicines for Malaria Venture as Global Test center for stage-specific gametocytocidal assays.http://www.frontiersin.org/Cellular_and_Infection_Microbiologyhj2022BiochemistryGeneticsMicrobiology and Plant PathologyUP Centre for Sustainable Malaria Control (UP CSMC

    Adapt or die : targeting unique transmission-stage biology for malaria elimination

    Get PDF
    Plasmodium parasites have a complex life cycle that includes development in the human host as well as the Anopheles vector. Successful transmission of the parasite between its host and vector therefore requires the parasite to balance its investments in asexual replication and sexual reproduction, varying the frequency of sexual commitment to persist within the human host and generate future opportunities for transmission. The transmission window is extended further by the ability of stage V gametocytes to circulate in peripheral blood for weeks, whereas immature stage I to IV gametocytes sequester in the bone marrow and spleen until final maturation. Due to the low gametocyte numbers in blood circulation and with the ease of targeting such life cycle bottlenecks, transmission represents an efficient target for therapeutic intervention. The biological process of Plasmodium transmission is a multistage, multifaceted process and the past decade has seen a much deeper understanding of the molecular mechanisms and regulators involved. Clearly, specific and divergent processes are used during transmission compared to asexual proliferation, which both poses challenges but also opportunities for discovery of transmission-blocking antimalarials. This review therefore presents an update of our molecular understanding of gametocyte and gamete biology as well as the status of transmission-blocking activities of current antimalarials and lead development compounds. By defining the biological components associated with transmission, considerations for the development of new transmission-blocking drugs to target such untapped but unique biology is suggested as an important, main driver for transmissionblocking drug discovery.https://www.frontiersin.org/journals/cellular-and-infection-microbiologydm2022BiochemistryGeneticsMicrobiology and Plant PathologySchool of Health Systems and Public Health (SHSPH)UP Centre for Sustainable Malaria Control (UP CSMC

    In vitro dual activity of Aloe marlothii roots and its chemical constituents against Plasmodium falciparum asexual and sexual stage parasites

    Get PDF
    Please abstract in the article.The Department of Science and Innovation (DSI) of South Africa; the South African Research Chairs Initiative of the DSI, administered through the South African National Research Foundation; the South African Medical Research Council; the University of Pretoria Postgraduate Research Support Bursary, South Africa and the L’OrĂ©al-UNESCO for Woman in Science grant.https://www.elsevier.com/locate/jethpharm2023-07-19hj2023BiochemistryChemistryGeneticsMicrobiology and Plant PathologySchool of Health Systems and Public Health (SHSPH)UP Centre for Sustainable Malaria Control (UP CSMC

    The artemiside-artemisox-artemisone-m1 tetrad : efficacies against blood stage p. falciparum parasites, dmpk properties, and the case for artemiside

    Get PDF
    Because of the need to replace the current clinical artemisinins in artemisinin combination therapies, we are evaluating fitness of amino-artemisinins for this purpose. These include the thiomorpholine derivative artemiside obtained in one scalable synthetic step from dihydroartemisinin (DHA) and the derived sulfone artemisone. We have recently shown that artemiside undergoes facile metabolism via the sulfoxide artemisox into artemisone and thence into the unsaturated metabolite M1; DHA is not a metabolite. Artemisox and M1 are now found to be approximately equipotent with artemiside and artemisone in vitro against asexual P. falciparum (Pf ) blood stage parasites (IC50 1.5–2.6 nM). Against Pf NF54 blood stage gametocytes, artemisox is potently active (IC50 18.9 nM early-stage, 2.7 nM late-stage), although against the late-stage gametocytes, activity is expressed, like other amino-artemisinins, at a prolonged incubation time of 72 h. Comparative drug metabolism and pharmacokinetic (DMPK) properties were assessed via po and iv administration of artemiside, artemisox, and artemisone in a murine model. Following oral administration, the composite Cmax value of artemiside plus its metabolites artemisox and artemisone formed in vivo is some 2.6-fold higher than that attained following administration of artemisone alone. Given that efficacy of short half-life rapidly-acting antimalarial drugs such as the artemisinins is associated with Cmax, it is apparent that artemiside will be more active than artemisone in vivo, due to additive effects of the metabolites. As is evident from earlier data, artemiside indeed possesses appreciably greater efficacy in vivo against murine malaria. Overall, the higher exposure levels of active drug following administration of artemiside coupled with its synthetic accessibility indicate it is much the preferred drug for incorporation into rational new artemisinin combination therapies.Supplementary Material 1: S1 Efficacy of artemisox, dose response curves against asexual, and gametocyte blood stage parasites: Figure S1a–e; S2 Efficacy of M1, dose response curves against asexual, and gametocyte blood stage parasites: Figure S2a–d; S3 Pharmacokinetics and metabolism, circulating concentrations of artemiside, artemisox, and artemisone: Table S3a–f, LC-MS/MS chromatograms of M1 Figure S3a–c; S4 In vitro efficacy data— previously published data for artemiside, artemisone, M1: Table S4a–c; S5 In vivo efficacy data— previously published data for artemiside, artemisone: Table S5; S6 Neurotoxicity data–previously published neurotoxicity data for DHA, artesunate, artemiside, artemisone: Table S6.Supplementary Material 2: PDF copy of reference [37].The South African Medical Research Council (MRC) Flagship Project MALTB-Redox with funds from the National Treasury under its Economic Competitiveness and Support Package, a South African National Research Foundation (SA NRF) grant, and by a South African MRC Strategic Health Innovation Partnership (SHIP) grant, a South African MRC Collaborative Centre for Malaria Research grant and the Department of Science and Innovation and SA NRF South African Research Chairs Initiative (SARChI) Grant.https://www.mdpi.com/journal/pharmaceuticsam2022BiochemistryGeneticsMicrobiology and Plant PathologyUP Centre for Sustainable Malaria Control (UP CSMC

    Activities of 11‐azaartemisinin and N‐sulfonyl derivatives against asexual and transmissible malaria parasites

    Get PDF
    Dihydroartemisinin (DHA), either used in its own right or as the active drug generated in vivo from the other artemisinins in current clinical use—artemether and artesunate—induces quiescence in ring‐stage parasites of Plasmodium falciparum (Pf). This induction of quiescence is linked to artemisinin resistance. Thus, we have turned to structurally disparate artemisinins that are incapable of providing DHA on metabolism. Accordingly, 11‐azaartemisinin 5 and selected N‐sulfonyl derivatives were screened against intraerythrocytic asexual stages of drug‐sensitive Pf NF54 and drug‐resistant K1 and W2 parasites. Most displayed appreciable activities against all three strains, with IC50 values 2000 toward asexual parasites. Overall, the readily accessible 11‐azaartemisinin 5 and the sulfonyl derivatives 11 and 16 represent potential candidates for further development, in particular for transmission blocking of artemisinin‐resistant parasites.http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1860-71872018-12-19hj2018Biochemistr

    Naphthylisoquinoline alkaloids, validated as hit multistage antiplasmodial natural products

    Get PDF
    The discovery and development of multistage antimalarial drugs targeting intra-erythrocytic asexual and sexual Plasmodium falciparum parasites is of utmost importance to achieve the ambitious goal of malaria elimination. Here, we report the validation of naphthylisoquinoline (NIQ) alkaloids and their synthetic analogues as multistage active antimalarial drug candidates. A total of 30 compounds were tested, of which 17 exhibited IC50 values <1 ÎŒM against drug-sensitive P. falciparum parasites (NF54 strain); 15 of these retained activity against a panel of drug-resistant strains. These compounds showed low in vitro cytotoxicity against HepG2 cells, with selectivity indices of>10. The tested compounds showed activity in vitro against both early- and late-stage P. falciparum gametocytes while blocking male gamete formation (> 70% inhibition of exflagellation at 2 ÎŒM). Additionally, five selected compounds were found to have good solubility (≄170 ÎŒM in PBS at pH 6.5), while metabolic stability towards human, mouse, and rat microsomes ranged from>90% to >7% after 30 min. Dioncophylline C (2a) emerged as a front runner from the study, displaying activity against both asexual parasites and gametocytes, a lack of cross-resistance to chloroquine, good solubility, and microsomal stability. Overall, this is the first report on the multistage activity of NIQs and their synthetic analogues including gametocytocidal and gametocidal effects induced by this class of compounds.We thank Dr. Raina Seupel, Dr. Jun Li, Dr. Christine Schies, Prof. Dr. DieudonnĂ© Tshitenge, and Dr. Sebastian Bischof for providing substances tested in this study. The UP ISMC acknowledges the SAMRC as Collaborating Centre for Malaria Research. This work was funded by the South African Research Chairs Initiative of the Department of Science and Technology, administered through the South African National Research Foundation to LMB (UID 84627), and supported by the SFB 630 “Agents against Infectious Diseases” funded by the Deutsche Forschungsgesellschaft (DFG) to GB. ACCdS and TJE acknowledge support of the National Institute of Allergy and Infectious Diseases of the National Institutes of Health under grant number R01AI143521. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.https://www.elsevier.com/locate/ijpddram2020BiochemistryChemistryGeneticsMicrobiology and Plant Patholog

    Optimal 10-aminoartemisinins with potent transmission-blocking capabilities for new artemisinin combination therapies–activities against blood stage P. falciparum including PfKI3 C580Y mutants and liver stage P. berghei parasites

    Get PDF
    We have demonstrated previously that amino-artemisinins including artemiside and artemisone in which an amino group replaces the oxygen-bearing substituents attached to C-10 of the current clinical artemisinin derivatives dihydroartemisinin (DHA), artemether and artesunate, display potent activities in vitro against the asexual blood stages of Plasmodium falciparum (Pf ). In particular, the compounds are active against late blood stage Pf gametocytes, and are strongly synergistic in combination with the redox active drug methylene blue. In order to fortify the eventual selection of optimum amino-artemisinins for development into new triple combination therapies also active against artemisinin-resistant Pf mutants, we have prepared new amino-artemisinins based on the easily accessible and inexpensive DHA-piperazine. The latter was converted into alkyl- and aryl sulfonamides, ureas and amides. These derivatives were screened together with the comparator drugs DHA and the hitherto most active amino-artemisinins artemiside and artemisone against asexual and sexual blood stages of Pf and liver stage P. berghei (Pb) sporozoites. Several of the new amino-artemisinins bearing aryl-urea and -amide groups are potently active against both asexual, and late blood stage gametocytes (IC50 0.4-1.0 nM). Although the activities are superior to those of artemiside (IC50 1.5 nM) and artemisone (IC50 42.4 nM), the latter are more active against the liver stage Pb sporozoites (IC50 artemisone 28 nM). In addition, early results indicate these compounds tend not to display reduced susceptibility against parasites bearing the Pf Kelch 13 propeller domain C580Y mutation characteristic of artemisinin-resistant Pf. Thus, the advent of the amino-artemisinins including artemiside and artemisone will enable the development of new combination therapies that by virtue of the amino-artemisinin component itself will possess intrinsic transmission-blocking capabilities and may be effective against artemisinin resistant falciparum malaria.Supplementary Table 1 | In vitro activities of selected amino-artemisinins against liver stage P. berghei, dose response curves and cytotoxicities.Supplementary Material comprises experimental details for synthesis and characterization data of the amino-artemisinins, and dose response curves for the in vitro P. berghei sporozoite stage efficacy assays recorded in Excel format in CDD Vault: UCSD CDD_Vault_Export_RESULTS_KDE_03-25-2019.This work was funded by the South African Medical Research Council (MRC) Flagship Project MALTB-Redox with funds from National Treasury under its Economic Competitiveness and Support Package to RH (MRC-RFA-UFSP-01-2013), the South African MRC Strategic Health Innovation Partnership (SHIP) grant, a South African MRC Collaborative Center for Malaria Research grant and South African National Research Foundation grants (UID 84627) to L-MB and to RH (UIDs 90682 and 98934). EW was supported by grants from the NIH (R01 AI090141-02), and Medicines for Malaria Venture, Geneva.http://www.frontiersin.org/Chemistryam2020BiochemistryGeneticsMicrobiology and Plant Patholog

    New transmission-selective antimalarial agents through hit-to-lead optimization of 2-([1,1 '-Biphenyl]-4-carboxamido)benzoic acid derivatives

    Get PDF
    Malaria elimination requires multipronged approaches, including the application of antimalarial drugs able to block humanto- mosquito transmission of malaria parasites. The transmissible gametocytes of Plasmodium falciparum seem to be highly sensitive towards epidrugs, particularly those targeting demethylation of histone post-translational marks. Here, we report exploration of compounds from a chemical library generated during hit-to-lead optimization of inhibitors of the human histone lysine demethylase, KDM4B. Derivatives of 2-([1,1’- biphenyl]-4-carboxamido) benzoic acid, around either the amide or a sulfonamide linker backbone (2-(arylcarboxamido) benzoic acid, 2-carboxamide (arylsulfonamido)benzoic acid and N-(2-(1H-tetrazol-5-yl)phenyl)-arylcarboxamide), showed potent activity towards late-stage gametocytes (stage IV/V) of P. falciparum, with the most potent compound reaching single digit nanomolar activity. Structure-activity relationship trends were evident and frontrunner compounds also displayed microsomal stability and favourable solubility profiles. Simplified synthetic routes support further derivatization of these compounds for further development of these series as malaria transmission-blocking agents.South African National Research Foundation; BMGF Grand Challenges Africa; South African Medical Research Council (SA MRC); South Carolina SmartState¼ Endowed Chair for Drug Discovery.https://chemistry-europe.onlinelibrary.wiley.com/journal/14397633am2023BiochemistryGeneticsMicrobiology and Plant PathologySchool of Health Systems and Public Health (SHSPH)UP Centre for Sustainable Malaria Control (UP CSMC

    Antimalarial benzimidazole derivatives incorporating phenolic Mannich base side chains inhibit microtubule and hemozoin formation : structure–activity relationship and in vivo oral efficacy studies

    Get PDF
    A novel series of antimalarial benzimidazole derivatives incorporating phenolic Mannich base side chains at the C2 position, which possess dual asexual blood and sexual stage activities, is presented. Structure–activity relationship studies revealed that the 1-benzylbenzimidazole analogues possessed submicromolar asexual blood and sexual stage activities in contrast to the 1H-benzimidazole analogues, which were only active against asexual blood stage (ABS) parasites. Further, the former demonstrated microtubule inhibitory activity in ABS parasites but more significantly in stage II/III gametocytes. In addition to being bona fide inhibitors of hemozoin formation, the 1H-benzimidazole analogues also showed inhibitory effects on microtubules. In vivo efficacy studies in Plasmodium berghei-infected mice revealed that the frontrunner compound 41 exhibited high efficacy (98% reduction in parasitemia) when dosed orally at 4 × 50 mg/kg. Generally, the compounds were noncytotoxic to mammalian cells.The University of Cape Town, South African Medical Research Council and South African Research Chairs Initiative of the Department of Science and Innovation, administered through the South African National Research Foundation (NRF) and a NRF Community of Practice on ‘Evaluating Malaria Control Interventions’.http://pubs.acs.org/loi/jmcmar2022-04-12hj2021BiochemistryGeneticsMicrobiology and Plant PathologyUP Centre for Sustainable Malaria Control (UP CSMC

    Artemisone and artemiside - potent pan-reactive antimalarial agents that also synergize redox imbalance in P. falciparum transmissible gametocyte stages

    Get PDF
    The emergence of resistance towards artemisinin combination therapies (ACTs) by the malaria parasite Plasmodium falciparum has the potential to severely compromise malaria control. Therefore, development of new artemisinins in combination with new drugs that impart activities towards both intraerythrocytic proliferative asexual and transmissible gametocyte stages, in particular those of resistant parasites, are urgently required. We define artemisinins as oxidant drugs through their ability to oxidize reduced flavin cofactors of flavin disulfide reductases critical for maintaining redox-homeostasis in the malaria parasite. Here we compare the activities of 10-amino artemisinin derivatives towards the asexual and gametocyte stages of P. falciparum parasites. Of these, artemisone and artemiside inhibited asexual and gametocyte stages, particularly stage V gametocytes in the low nM range. Further, treatment of both early and late gametocyte stages with artemisone or artemiside combined with the pro-oxidant redox partner methylene blue displays notable synergism. These data suggest that modulation of redox-homeostasis likely is an important druggable process, particularly in gametocytes, and thereby enhances the prospect of using combinations of oxidant and redox drugs for malaria control.The South African Medical Research Council (MRC) Flagship Project MALTB-Redox with funds from the National Treasury under its Economic Competitiveness and Support Package to Richard K. Haynes; a South African MRC Strategic Health Innovation Partnership (SHIP) grant, a South African MRC Collaborative Centre for Malaria Research grant, and a South African National Research Foundation grant (UID 84627) to Lyn-Marie Birkholtz; and South African National Research Foundation grants to Richard K. Haynes (UIDs 90682 and 98934). Donatella Taramelli and Sarah D'Alessandro acknowledge the support from the Global Health Program of the Bill & Melinda Gates Foundation (grant OPP1040394 to Donatella Taramelli, Pietro Alano coordinator, and COST Action CM1307).http://aac.asm.org2019-02-01hj2018Biochemistr
    corecore