Supplementary information

In vitro dual activity of Aloe marlothii and its chemical constituents against Plasmodium falciparum asexual and sexual stage parasites

Sephora Mutombo Mianda ^a, Luke Invernizzi^a, Mariëtte E. van der Watt^{b,c}, Janette Reader^b, Phanankosi Moyo^{a,b}, Lyn-Marié Birkholtz^{b,*}, Vinesh J. Maharaj^{a,*}

^a Department of Chemistry, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0028, South Africa

^b Department of Biochemistry, Genetics and Microbiology, Institute for Sustainable Malaria Control, University of Pretoria, Hatfield, Pretoria 0028, South Africa

^c Institute for Sustainable Malaria Control, School of Health Systems and Public Health, University of Pretoria, Gezina, Pretoria 0031, South Africa

Sephora Mutombo Mianda (<u>sephoramianda@gmail.com</u>) Luke Invernizzi (<u>lukeinvernizzi@gmail.com</u>) Mariette E. Botha (<u>mariette.vanderwatt@up.ac.za</u>) Janette Reader (<u>janette.reader@up.ac.za</u>) Phanankosi Moyo (<u>phanankosimoyo@gmail.com</u>) Lyn-Marié Birkholtz (<u>lbirkholtz@up.ac.za</u>) Vinesh J. Maharaj (<u>vinesh.maharaj@up.ac.za</u>)

*Corresponding author (Chemistry): Vinesh J. Maharaj Tel: +27 (0824665466) Email address: <u>vinesh.maharaj@up.ac.za</u> Department of Chemistry University of Pretoria Private Bag x 20 Hatfield, 0028

*Corresponding author (Parasitology): Lyn-Marié Birkholtz Tel: +27 12 420 2479 Email address: <u>lbirkholtz@up.ac.za</u> Department of Biochemistry, Genetics and Microbiology University of Pretoria Private Bag x 20 Hatfield, 0028

Figure SI.1: Chemical structures of aloesaponol I (1), aloesaponarin I (2), aloesaponol IV (3), β -sorigenin-1-O-methylether (4), emodin (5), and chrysophanol (6).

RT	Acquired	Formula	Theoretical	Calculated	Possible structure	iFit value	MS/MS Data	MS/MS Data (fragments)	
(min)	$[M+H]^+$	of	$[M+H]^{+}$	accurate					
	m/z	possible	m/z	mass					
		structure		(Da)					
8.71	317.1104	$C_{17}H_{16}O_{6}$	317.3139	317.1025	Aloesaponol I	0.001	285.0761	[M+H] ⁺ -CH ₃ OH	
							267.0632	[M+H] ⁺ -CH ₃ OH-H ₂ O	
							211.0749	[M+H] ⁺ - CH ₃ OH-H ₂ O -2CO	
9.97	259.1021	C ₁₅ H ₁₄ O ₄	259.2778	259.0970	Prechrysophanol or	0.011	241.0855	$[M+H]^+-H_2O$	
					Aloesaponol II		195.0797	[M+H]+-2H ₂ O-CO	
							165.0696	$[M+H]^+-2H_2O-CO-C_2H_6$	
11.38	313.0786	C ₁₇ H ₁₂ O ₆	313.2822	313.0712	Aloesaponarin I	0.001	281.0435	[M+H] ⁺ -CH ₃ OH	
						225.0539	[M+H] ⁺ - CH ₃ OH-2CO		
							197.0595	[M+H] ⁺ - CH ₃ OH-3CO	
							169.0643	[M+H] ⁺ - CH ₃ OH-4CO	

Supplementary table 1: Analysis of UPLC data of A. marlothii roots DCM:MeOH extract run in ESI positive-mode

Position	Isolated aloesaponol I (methan	ol- <i>D</i> 4)	Data published for aloesaponol I (¹ H, 400 MHz ¹³ C, 100 MHz) (Canche-Escamilla et al., 2019)		
	$\delta_{\rm H}$ (m, J in Hz)	δ _C	$\delta_{\rm H}$ (m, J in Hz)	δ _C	
1		204.30		204.18	
2	2.74 (dd, 7.2, 17.5, 1Ha)	47.69	2.69 (dd, 16.7, 7.1, 1Ha)	46.9	
	2.97 (d, 7.6, 1Hb)		2.95 (dd, 17.2, 3.6, 1Hb)		
3	4.33 (m, 1H)	66.83	4.25 (m, 1H)	64.98	
4	2.97 (dd, 3.26, 13.3, 1Ha)	39.06	2.90 (dd, 15.8, 7.1, 1Ha)	38.06	
	3.2 (dd, 3.26, 15.5, 1Hb)		3.12 (dd, 15.8, 3.4, 1Hb)		
5	6.83 (s, 1H)	108.76	6.93 (s, 1H)	108.07	
5a		138.13		137.74	
6		156.82		155.59	
7		139.14		125.95	
8		143.07		137.16	
8a		111.72		115.88	
9		168.00		166.45	
9a		117.67		110.76	
10	6.87 (s, 1H)	118.18	6.95 (s, 1H)	117.08	
10a		126.81		141.32	
1'		171.15		168.72	
O-CH ₃	3.92 (s, 3H)	52.90	3.85 (s, 3H)	52.61	
8-CH3	2.77	21.34	2.70 (s, 3H)	21.06	

Supplementary table 2: ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated aloesaponol I (1) in methanol-*d*₄ compared to the published data (Canche-Escamilla et al., 2019)

Supplementary table 3: ¹H (500 MHz) and ¹³C (125 MHz) NMR data of aloesaponarin I (**2**) (CDCl₃) compared to the published data (Abdissa et al., 2017).

Position	Isolated Aloesaponari	n I (CDCl ₃)	Data published for Aloesaponarin I (¹ H, 500 MHz ¹³ C, 125 MHz) (Abdissa et al., 2017)		
	$\delta_{\rm H}$ (m, J in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (m, J in Hz)	$\delta_{\rm C}$	
1		148.10		148.1	
1a		121.22		121.2	
2		124.63		132.8	
3		163.64		162.6	
4	7.79 (s, 1H)	115.21	7.80 (s, 1H)	115.2	
4a		138.92		138.9	
5	7.31 (dd, 1.07, 8.31, 1H)	119.11	7.77 (d, 7.6, 1H)	119.1	
6	7.62 (t, 8.10, 1H)	135.97	7.62 (t, 7.6, 1H)	136	
7	7.77 (dd, 1.07, 7.50, 1H)	125.18	7.31 (d, 8.2, 1H)	125.2	
8		162.61		163.6	
9		190.1		189.7	
9a		117.64		115.3	
10		182.7		182.3	
10a		132.77		124.6	
1'		170.67		170.7	
-OCH ₃	4.06 (s, 3H)	53.36	4.06 (s, 3H)	53.3	
CH ₃	2.97 (s, 3H)	22.04	2.98 (s, 3H)	22	
8-OH	12.93 (s, 1H)		12.93 (s, 1H)		

Supplementary table 4: Comparison of ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated aloesaponol IV (3) in CDCl₃ to the published ¹H (500 MHz) data in CDCl₃ (no record of ¹³C NMR found in literature) (Yagi et al., 1977).

Position	Isolated aloesaponol IV (CDCl ₃)		Data published for aloesaponol IV (1H, 500
			MHz) (Yagi et al., 1977)
	$\delta_{\rm H}$ (m, <i>J</i> in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (m, <i>J</i> in Hz)
1		201.72	
2	4.44 (dd, 4.41 and 9.6, 1H)	76.59	4.38 (dd, 4 and 8, 1H)
3	2.55 (m, 1H)	36.97	2.3 - 2.5 (m, 2H)
	2.37 (m, 1H)		
4	5.14 (brs, 1H)	66.95	5.06 (dd, 4 and 6, 1H)
5	6.78 (s, 1H)	113.93	6.71 (d, 1.5, 1H)
5a		144.68	
6		107.19	
7	7.03 (s, 1H)	119.14	6.92 (d, 1.5, 1H)
8		157.95	
8a		139.63	
9		166.49	
9a		137.99	
10	7.14 (s, 1H)	117.45	7.06 (s, 1H)
10a		111.67	
-OCH ₃	3.68 (s, 3H)	59.30	3.64 (s, 3H)
CH ₃	2.46 (s, 3H)	22.35	2.42 (s, 3H)
8-OH	9.59 (s, 1H)		9.51 (s, 1H)
9-OH	15.80 (s, 1H)		15.70 (s, 1H)

Supplementary table 5: ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated β-sorigenin-1-O-methylether (4) compared to the published data (Abegaz and Kebede, 1995).

Position	Isolated β-sorigenin-1- <i>O</i> -methylether (CDCl ₃)		Data published for β-sorigenin-1- <i>O</i> - methylether (¹ H, 300 MHz ¹³ C, 75 MHz) in CDCl ₃ (Abegaz and Kebede, 1995)		
	$\delta_{\rm H}$ (m, <i>J</i> in Hz)	δ _C	$\delta_{\rm H}$ (m, <i>J</i> in Hz)	$\delta_{\rm C}$	
1		157.86		156.54	
1a		141.62		141.24	
2		168.09		168.22	
3	5.38 (d, J =1.2, 2H)	68.94	5.36 (s, 2H)	68.91	
3a		110.77		110.49	
4	7.56 (s, 1H)	116.51	7.53 (s, 1H)	116.46	
4a		116.83		116.83	
5	7.38 (d, 8.0, 1H)	119.03	7.35 (br d, 7.7, 1H)	119.07	
6	7.52 (t, 8.0, 1H)	131.08	7.52 (t, 7.9, 1H)	131.26	
7	6.93 (d, 7.7, 1H)	111.23	6.96 (d, 7.7, 1H)	111.54	
8		156.62		156.00	
8a		139.99		139.89	
-OCH ₃	4.41 (s, 3H)	65.07	4.45 (s, 3H)	65.16	
8-OH	9.73 (s, 1H)		9.76 (s, 1H)		

Position	Isolated emodin (CD ₂ Cl ₂)		Data published for emodin (¹ H, 400 MHz ¹³ C, 100 MHz) (Ngan et al., 2017)	
	$\delta_{\rm H}$ (m, <i>J</i> in Hz)	δ _C	$\delta_{\rm H}$ (m, J in Hz)	δ _C
1		158.29		161.9
1a		112.94		114.1
2	7.14 (s, 1H)	124.52	7.15 (s, 1H)	124.6
3		149.52		148.4
4	7.73 (s, 1H)	120.80	7.48 (d, 1.2, 1H)	120.9
4a		133.32		133.4
5	7.31 (s, 1H)	129.61	7.06 (s, 1H)	110.4
5a		114.05		135.5
6		157.65		167.7
7	7.30 (s, 1H)	129.52	6.51 (s, 1H)	108.4
8		162.89		165.1
8a		112.65		108.7
9		190.85		189.4
10		186.80		182.2
3-CH ₃	2.48 (s, 3H)	22.09	2.41 (s, 3H)	22.0
1-OH	12.11 (s, 1H)		12.12 (s, 1H)	
6-OH	12.98 (s, 1H)			
8-OH	12.29 (s, 1H)			

Supplementary table 6: ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated emodin (5) in CD₂Cl₂ compared to the published data (Ngan et al., 2017).

Supplementary table 7: ¹H (500 MHz) and ¹³C (125 MHz) NMR data of isolated emodin (5) in CD₂Cl₂ compared to the published data (Uzun et al., 2020).

Position	Isolated chrysophanol (CDCl ₃)		Data published for chrysophanol (¹ H, 400 MHz ¹³ C, 100 MHz) in CDCl ₃ (Uzun et al., 2020)		
	$\delta_{\rm H}$ (m, J in Hz)	$\delta_{\rm C}$	$\delta_{\rm H}$ (m, J in Hz)	$\delta_{\rm C}$	
1		162.85		162.8	
2	7.13 (s, 1H)	124.54	7.07 (s, 1H)	124.5	
3		149.52		149.5	
4	7.67 (s, 1H)	121.55	7.64 (s, 1H)	121.5	
5	7.84 (dd, 1.07, 7.49, 1H)	120.11	7.81 (dd, 1.2, 7.4, 1H)	120.1	
5a		133.77		133.75	
6	7.69 (t, 8.33, 1H)	137.13	7.67 (dd, 8.4, 7.5, 1H)	137.1	
7	7.31 (dd, 1.07, 8.42, 1H)	124.74	7.28 (dd, 1.2, 8.4, 1H)	124.7	
8		162.55		162.5	
8a		116.01		115.99	
9		192.71		192.7	
9a		113.87		113.85	
10		182.25		182.1	
10a		133.40		133.38	
-CH ₃	2.49 (s, 3H)	22.44	2.46 (s, 3H)	22.4	
1-OH	12.05 (s, 1H)		12.01 (s, 1H)		
8-OH	12.16 (s, 1H)		12.12 (s, 1H)		

Figure SI.3: ¹³C NMR (500 MHz, CD₃OD) spectrum of aloesaponol I (1)

Figure SI.5: ¹³C NMR (500 MHz, CD₃OD) spectrum of aloesaporarin I (2)

Figure SI.7: ¹³C NMR (500 MHz, CDCl₃) spectrum of aloesaponol IV (3)

Figure SI.8: HSQC spectrum (500 MHz, CDCl₃) of aloesaponol IV (3)

Figure SI.9: HMBC spectrum (500 MHz, CDCl₃) of aloesaponol IV (3)

Figure SI.10: COSY spectrum (500 MHz, CDCl₃) of aloesaponol IV (3)

Figure SI.12: ¹³C NMR (500 MHz, CD₂Cl₂) spectrum of β-sorigenin-1-O-methylether (4)

Figure SI.13: HSQC spectrum (500 MHz, CD₂Cl₂) of β-sorigenin-1-O-methylether (4)

Figure SI.14: HMBC spectrum (500 MHz, CD₂Cl₂) of β-sorigenin-1-O-methylether (4)

Figure SI.15: COSY spectrum (500 MHz, CD₂Cl₂) of β-sorigenin-1-O-methylether (4)

Figure SI.17: ¹³C NMR (500 MHz, CD₂Cl₂) spectrum of emodin (5)

Figure SI.18: ¹H NMR (500 MHz, CDCl₃) spectrum of chrysophanol (6)

Figure SI.19: ¹³C NMR (500 MHz, CDCl₃) spectrum of chrysophanol (6)

Figure SI.20: Binding pose and schematic representation of the interactions pyronaridine makes with surrounding residues of the DNA topoisomerase II enzyme

- Abdissa, D., Geleta, G., Bacha, K., Abdissa, N., 2017. Phytochemical investigation of Aloe pulcherrima roots and evaluation for its antibacterial and antiplasmodial activities. PLOS ONE 12(3), e0173882.
- Abegaz, B.M., Kebede, T., 1995. Geshoidin: A bitter principle of Rhamnus princides and other constituents of the leaves. Bulletin of the Chemical Society of Ethiopia 9(2).
- Canche-Escamilla, G., Colli-Acevedo, P., Borges-Argaez, R., Quintana-Owen, P., May-Crespo, J.F., Cáceres-Farfan, M., Yam Puc, J.A., Sansores-Peraza, P., Vera-Ku, B.M., 2019. Extraction of phenolic components from an Aloe vera (Aloe barbadensis Miller) crop and their potential as antimicrobials and textile dyes. Sustainable Chemistry and Pharmacy 14, 100168.
- Ngan, N.T.T., Quang, T.H., Kim, K.-W., Kim, H.J., Sohn, J.H., Kang, D.G., Lee, H.S., Kim, Y.-C., Oh, H., 2017. Anti-inflammatory effects of secondary metabolites isolated from the marinederived fungal strain Penicillium sp. SF-5629. Archives of Pharmacal Research 40(3), 328-337.
- Uzun, M., Guvenalp, Z., Kazaz, C., Demirezer, L.O., 2020. Matrix metalloproteinase inhibitor and sunscreen effective compounds from Rumex crispus L.: isolation, identification, bioactivity and molecular docking study. Phytochemical Analysis 31(6), 818-834.
- Yagi, A., Makino, K., Nishioka, I., 1977. Studies on the Constituents of Aloe saponaria HAW. II. The Structures of Tetrahydroanthracene Derivatives, Aloesaponol III and -IV. CHEMICAL & PHARMACEUTICAL BULLETIN 25(7), 1764-1770.