3,196 research outputs found

    Causal inference for social network data

    Full text link
    We describe semiparametric estimation and inference for causal effects using observational data from a single social network. Our asymptotic result is the first to allow for dependence of each observation on a growing number of other units as sample size increases. While previous methods have generally implicitly focused on one of two possible sources of dependence among social network observations, we allow for both dependence due to transmission of information across network ties, and for dependence due to latent similarities among nodes sharing ties. We describe estimation and inference for new causal effects that are specifically of interest in social network settings, such as interventions on network ties and network structure. Using our methods to reanalyze the Framingham Heart Study data used in one of the most influential and controversial causal analyses of social network data, we find that after accounting for network structure there is no evidence for the causal effects claimed in the original paper

    A new approach to hierarchical data analysis: Targeted maximum likelihood estimation for the causal effect of a cluster-level exposure

    Full text link
    We often seek to estimate the impact of an exposure naturally occurring or randomly assigned at the cluster-level. For example, the literature on neighborhood determinants of health continues to grow. Likewise, community randomized trials are applied to learn about real-world implementation, sustainability, and population effects of interventions with proven individual-level efficacy. In these settings, individual-level outcomes are correlated due to shared cluster-level factors, including the exposure, as well as social or biological interactions between individuals. To flexibly and efficiently estimate the effect of a cluster-level exposure, we present two targeted maximum likelihood estimators (TMLEs). The first TMLE is developed under a non-parametric causal model, which allows for arbitrary interactions between individuals within a cluster. These interactions include direct transmission of the outcome (i.e. contagion) and influence of one individual's covariates on another's outcome (i.e. covariate interference). The second TMLE is developed under a causal sub-model assuming the cluster-level and individual-specific covariates are sufficient to control for confounding. Simulations compare the alternative estimators and illustrate the potential gains from pairing individual-level risk factors and outcomes during estimation, while avoiding unwarranted assumptions. Our results suggest that estimation under the sub-model can result in bias and misleading inference in an observational setting. Incorporating working assumptions during estimation is more robust than assuming they hold in the underlying causal model. We illustrate our approach with an application to HIV prevention and treatment

    History-Adjusted Marginal Structural Models and Statically-Optimal Dynamic Treatment Regimes

    Get PDF
    Marginal structural models (MSM) provide a powerful tool for estimating the causal effect of a treatment. These models, introduced by Robins, model the marginal distributions of treatment-specific counterfactual outcomes, possibly conditional on a subset of the baseline covariates. Marginal structural models are particularly useful in the context of longitudinal data structures, in which each subject\u27s treatment and covariate history are measured over time, and an outcome is recorded at a final time point. However, the utility of these models for some applications has been limited by their inability to incorporate modification of the causal effect of treatment by time-varying covariates. Particularly in the context of clinical decision making, such time-varying effect modifiers are often of considerable or even primary interest, as they are used in practice to guide treatment decisions for an individual. In this article we propose a generalization of marginal structural models, which we call history-adjusted marginal structural models (HA-MSM). These models allow estimation of adjusted causal effects of treatment, given the observed past, and are therefore more suitable for making treatment decisions at the individual level and for identification of time-dependent effect modifiers. Specifically, a HA-MSM models the conditional distribution of treatment-specific counterfactual outcomes, conditional on the whole or a subset of the observed past up till a time-point, simultaneously for all time-points. Double robust inverse probability of treatment weighted estimators have been developed and studied in detail for standard MSM. We extend these results by proposing a class of double robust inverse probability of treatment weighted estimators for the unknown parameters of the HA-MSM. In addition, we show that HA-MSM provide a natural approach to identifying the dynamic treatment regime which follows, at each time-point, the history-adjusted (up till the most recent time point) optimal static treatment regime. We illustrate our results using an example drawn from the treatment of HIV infection

    History-Adjusted Marginal Structural Models: Time-Varying Effect Modification

    Get PDF
    Marginal structural models (MSM) provide a powerful tool for estimating the causal effect of a treatment, particularly in the context of longitudinal data structures. These models, introduced by Robins, model the marginal distributions of treatment-specific counterfactual outcomes, possibly conditional on a subset of the baseline covariates. However, standard MSM cannot incorporate modification of treatment effects by time-varying covariates. In the context of clinical decision- making such time-varying effect modifiers are often of considerable interest, as they are used in practice to guide treatment decisions for an individual. In this article we introduce a generalization of marginal structural models, which we call history-adjusted marginal structural models (HA-MSM). These models allow estimation of adjusted causal effects of treatment, given the observed past, and are therefore more suitable for making treatment decisions at the individual level and for identification of time-dependent effect modifiers. We provide a practical introduction to HA-MSM relying on an example drawn from the treatment of HIV, and discuss parameters estimated, assumptions, and implementation using standard software
    corecore