221 research outputs found

    The tectonic evolution of the Chuya-Kurai zone (Siberian Altai mountains) by means of multi-method chronology

    Get PDF
    The Phanerozoic tectonic evolution of the Chuya-Kurai zone was studied by means of zircon U/Pb-dating, apatite fission track (AFT) and apatite (U-Th)/He (AHe) thermochronology performed on basement rocks. Our results suggest that multiple magmatic episodes during the Paleozoic, related to the accretion-collision tectonics in Central Asia, affected our study area. Mesozoic and Cenozoic basement cooling events are interpreted as periods of tectonic reactivation. A new tectonic model for Late Cenozoic evolution of the Chuya-Kurai zone is proposed

    Datering van ceramiek op basis van thermoluminescentie: mogelijkheden van de methode, authenticiteitstesten en bijdrage van de archeoloog.

    Get PDF
    In de periode 1992-1993 werd aan de Universiteit van Gent een laboratorium geïnstalleerd voor de datering van jong-geologische sedimenten en archeologische ceramiek met de thermoluminescentiemethode. De implementatie van deze dateringstechniek is het resultaat van een gezamenlijke, interdisciplinaire inspanning van de auteurs van dit artikel die hun wortels respectievelijk in de geochronologie en in de nucleaire analytische scheikunde hebben. De uitbouw van de infrastructuur en de aankoop van de apparatuur gebeurde met de financiële steun van het NFWO en de Nationale Loterij. De installatie omvat naast de klassieke uitrusting voor het uitvoeren van metingen met de recent ontwikkelde optische stimuleringstechniek (infrarood-OSL)

    Late Quaternary paleoclimatic and geomorphological evolution at the interface between the Menyuan basin and the Qilian Mountains, northeastern Tibetan Plateau

    Get PDF
    The Tibetan Plateau is regarded as an amplifier and driver of environmental change in adjacent regions because of its extent and high altitude. However, reliable age control for paleoenvironmental information on the plateau is limited. OSL appears to be a valid method to constrain the age of deposits of glacial and fluvial origin, soils and periglacial structures in the Menyuan basin on the northeastern Tibetan Plateau. Dating results show glaciers advanced extensively to the foot of the Qilian mountains at ~. 21. ka, in agreement with the timing of the global Last Glacial Maximum (LGM) recorded in Northern Hemisphere ice cores. Comparison with results from the eastern Tibetan Plateau suggests that the factor controlling glacial advance in both regions was decreased temperature, not monsoon-related precipitation increase. The areas of the Menyuan basin occupied by glacio-fluvial deposits experienced continuous permafrost during the LGM, indicated by large cryoturbation features, interpreted to indicate that the mean annual temperature was ≥. 7. °C lower than at present. Glacio-fluvial systems in the Menyuan basin aggraded and terraces formed during cold periods (penultimate glaciation, LGM, and possibly the Younger Dryas) as a response to increased glacial sediment production and meltwater runoff then. © 2013 University of Washington

    Depletion of RIPK3 or MLKL blocks TNF-driven necroptosis and switches towards a delayed RIPK1 kinase-dependent apoptosis

    Get PDF
    In human cells, the RIPK1-RIPK3-MLKL-PGAM5-Drp1 axis drives tumor necrosis factor (TNF)-induced necroptosis through mitochondrial fission, but whether this pathway is conserved among mammals is not known. To answer this question, we analyzed the presence and functionality of the reported necroptotic axis in mice. As in humans, knockdown of receptorinteracting kinase-3 (RIPK3) or mixed lineage kinase domain like (MLKL) blocks TNF-induced necroptosis in L929 fibrosarcoma cells. However, repression of either of these proteins did not protect the cells from death, but instead induced a switch from TNF-induced necroptosis to receptor-interacting kinase-1 (RIPK1) kinase-dependent apoptosis. In addition, although mitochondrial fission also occurs during TNF-induced necroptosis in L929 cells, we found that knockdown of phosphoglycerate mutase 5 (PGAM5) and dynamin 1 like protein (Drp1) did not markedly protect the cells from TNF-induced necroptosis. Depletion of Pink1, a reported interactor of both PGAM5 and Drp1, did not affect TNF-induced necroptosis. These results indicate that in these murine cells mitochondrial fission and Pink1 dependent processes, including Pink-Parkin dependent mitophagy, apparently do not promote necroptosis. Our data demonstrate that the core components of the necrosome (RIPK1, RIPK3 and MLKL) are crucial to induce TNF-dependent necroptosis both in human and in mouse cells, but the associated mechanisms may differ between the two species or cell types

    Tectonic history of the Kyrgyz South Tien Shan (Atbashi-Inylchek) suture zone : the role of inherited structures during deformation-propagation

    Get PDF
    Multimethod chronology was applied on intrusives bordering the Kyrgyz South Tien Shan suture (STSs) to decipher the timing of (1) formation and amalgamation of the suturing units and (2) intracontinental deformation that built the bordering mountain ranges. Zircon U/Pb data indicate similarities between the Tien Shan and Tarim Precambrian crust. Caledonian (similar to 440-410 Ma) and Hercynian (similar to 310-280 Ma) zircon U/Pb ages were found at the edge of the STSs, related to subduction and closure of the Turkestan Ocean and the formation of the suture itself. Permian-Triassic (similar to 280-210 Ma) titanite fission track and zircon (U-Th)/He data record the first signs of exhumation when the STSs evolved into a shear zone and the adjacent Tarim basin started to subside. Low-temperature thermochronological (apatite fission track, zircon and apatite (U-Th)/He) analyses reveal three distinct cooling phases, becoming younger toward the STSs center: (1) Jurassic-Cretaceous cooling ages provide evidence that a Mesozoic South Tien Shan orogen formed as a response to the Cimmerian orogeny; (2) Early Paleogene (similar to 60-45 Ma) data indicate a renewed pulse of STSs reactivation during the Early Cenozoic; (3) Neogene ages constrain the onset of the modern Tien Shan mountain building to the Late Oligocene (similar to 30-25 Ma), which intensified during the Miocene (similar to 10-8 Ma) and Pliocene (similar to 3-2 Ma). The Cenozoic signals may reflect renewed responses to collisions at the southern Eurasian border (i.e., the Kohistan-Dras and India-Eurasia collisions). This progressive rejuvenation of the STSs demonstrates that deformation has not migrated steadily into the forelands, but was focused on pre-existing basement structures
    • …
    corecore