48 research outputs found
Basal astrocyte and microglia activation in the central nervous system of Familial Hemiplegic Migraine Type I mice
Background Gain-of-function missense mutations in the alpha(1A) subunit of neuronal Ca(V)2.1 channels, which define Familial Hemiplegic Migraine Type 1 (FHM1), result in enhanced cortical glutamatergic transmission and a higher susceptibility to cortical spreading depolarization. It is now well established that neurons signal to surrounding glial cells, namely astrocytes and microglia, in the central nervous system, which in turn become activated and in pathological conditions can sustain neuroinflammation. We and others previously demonstrated an increased activation of pro-algogenic pathways, paralleled by augmented macrophage infiltration, in both isolated trigeminal ganglia and mixed trigeminal ganglion neuron-satellite glial cell cultures of FHM1 mutant mice. Hence, we hypothesize that astrocyte and microglia activation may occur in parallel in the central nervous system. Methods We have evaluated signs of reactive glia in brains from naive FHM1 mutant mice in comparison with wild type animals by immunohistochemistry and Western blotting. Results Here we show for the first time signs of reactive astrogliosis and microglia activation in the naive FHM1 mutant mouse brain. Conclusions Our data reinforce the involvement of glial cells in migraine, and suggest that modulating such activation may represent an innovative approach to reduce pathology
Genetics of migraine and pharmacogenomics: some considerations
Migraine is a complex disorder caused by a combination of genetic and environmental factors
Analysis of shared heritability in common disorders of the brain
Paroxysmal Cerebral Disorder
No mutations in the voltage-gated Na(V)1.7 sodium channel alpha 1 subunit gene SCN9A in familial complex regional pain syndrome
Background: Mutations in the voltage-gated Na(V)1.7 Na+ channel alpha 1 gene SCN9A have been linked to pain disorders, such as inherited primary erythromelalgia and paroxysmal extreme pain disorder. Both show clinical overlap with complex regional pain syndrome (CRPS), a condition that is characterized by pain in association with combinations of vasomotor, sudomotor, sensory, and motor disturbances. Therefore, we here investigated the involvement of the SCN9A gene in familial CRPS. Methods: We performed a mutation analysis of the SCN9A gene in four index cases of families with CRPS. All 26 coding exons and adjacent sequences of the SCN9A gene were analyzed for mutations using direct sequencing analysis. Results: No causal gene mutations were identified in the SCN9A gene in any of the patients. Conclusions: Despite the fact that the SCN9A gene is an excellent candidate, we did not find evidence that it plays a major role in familial CRPS.Pathophysiology of paroxysmal and chronic degenerative progressive disorder of the central and periferal nervous syste
Spreading depolarizations increase delayed brain injury in a rat model of subarachnoid hemorrhage
Paroxysmal Cerebral Disorder
Spreading depolarizations increase delayed brain injury in a rat model of subarachnoid hemorrhage
Functional Genomics of Muscle, Nerve and Brain Disorder
Systematic mutation analysis of seven dystonia genes in complex regional pain syndrome with fixed dystonia
Complex regional pain syndrome type 1 (CRPS-1) is a chronic pain disorder that in some patients is associated with fixed dystonia. The pathogenesis of CRPS and its relation to dystonia remain poorly understood. Several genes (so-called DYT genes) identified in other causes of dystonia play a role in mechanisms that have been implicated in CRPS. Because different mutations in the same gene can result in diverse phenotypes, we sequenced all coding exons of the DYT1, DYT5a, DYT5b, DYT6, DYT11, DYT12, and DYT16 genes in 44 CRPS patients with fixed dystonia to investigate whether high-penetrant causal mutations play a role in CRPS. No such mutations were identified, indicating that these genes do not seem to play a major role in CRPS.Neurological Motor Disorder
Neurotransmitter release from tottering mice nerve terminals with reduced expression of mutated P- and Q-type Ca2+-channels.
Neurotransmitter release is triggered by Ca2+-influx through multiple sub-types of high voltage-activated Ca2+-channels. Tottering mice have a mutation in the alpha1A pore-forming subunit of P- and Q-type Ca2+-channels, two prominent sub-types that regulate transmitter release from central nerve terminals. Immunoblotting analysis of purified forebrain terminals from tottering mice revealed an 85% reduction in the protein expression level of the mutated alpha1A subunit compared to expression of the alpha1A subunit in wild-type terminals. In contrast, the expression of the alpha1B subunit of the N-type Ca2+-channels was unchanged. Release of the amino acids glutamate and GABA and of the neuropeptide cholecystokinin (CCK) induced by a short (100 ms) depolarization pulse was unchanged in the terminals of tottering mice. Studies using specific blockers of Ca2+-channels however, revealed a reduced contribution of P- and Q-type Ca2+-channels to glutamate and cholecystokinin release, whereas a greater reliance on N-type Ca2+-channels for release of these transmitters was observed. In contrast, the contribution of the P-, Q- and N-type Ca2+-channels to the release of GABA was not altered in tottering mice. These results indicate that the expression of the alpha1A subunit was decreased in terminals from tottering mice, and that a decreased contribution of P- and Q-type Ca2+-channels to the release of glutamate and cholecystokinin was functionally compensated by an increased contribution of N-type Ca2+-channels