2,617 research outputs found

    Nonadiabatic transitions in a Stark decelerator

    Full text link
    In a Stark decelerator, polar molecules are slowed down and focussed by an inhomogeneous electric field which switches between two configurations. For the decelerator to work, it is essential that the molecules follow the changing electric field adiabatically. When the decelerator switches from one configuration to the other, the electric field changes in magnitude and direction, and this can cause molecules to change state. In places where the field is weak, the rotation of the electric field vector during the switch may be too rapid for the molecules to maintain their orientation relative to the field. Molecules that are at these places when the field switches may be lost from the decelerator as they are transferred into states that are not focussed. We calculate the probability of nonadiabatic transitions as a function of position in the periodic decelerator structure and find that for the decelerated group of molecules the loss is typically small, while for the un-decelerated group of molecules the loss can be very high. This loss can be eliminated using a bias field to ensure that the electric field magnitude is always large enough. We demonstrate our findings by comparing the results of experiments and simulations for the Stark deceleration of LiH and CaF molecules. We present a simple method for calculating the transition probabilities which can easily be applied to other molecules of interest.Comment: 12 pages, 9 figures, minor revisions following referee suggestion

    The final two redshifts for radio sources from the equatorial BRL sample

    Full text link
    Best, Rottgering and Lehnert (1999, 2000a) defined a new sample of powerful radio sources from the Molonglo Reference Catalogue, for which redshifts were compiled or measured for 177 of the 178 objects. For the final object, MRC1059-010 (3C249), the host galaxy is here identified using near-infrared imaging, and the redshift is determined from VLT spectroscopy. For one other object in the sample, MRC0320+053 (4C05.14), the literature redshift has been questioned: new spectroscopic observations of this object are presented, deriving a corrected redshift. With these two results, the spectroscopic completeness of this sample is now 100%. New redshifts are also presented for PKS0742+10 from the Wall & Peacock 2.7 GHz catalogue, and PKS1336+003 from the Parkes Selected Regions. PKS0742+10 shows a strong neutral hydrogen absorption feature in its Lyman-alpha emission profile.Comment: 4 pages. LaTeX. Accepted for publication in MNRA

    Semiclassical time--dependent propagation in three dimensions: How accurate is it for a Coulomb potential?

    Full text link
    A unified semiclassical time propagator is used to calculate the semiclassical time-correlation function in three cartesian dimensions for a particle moving in an attractive Coulomb potential. It is demonstrated that under these conditions the singularity of the potential does not cause any difficulties and the Coulomb interaction can be treated as any other non-singular potential. Moreover, by virtue of our three-dimensional calculation, we can explain the discrepancies between previous semiclassical and quantum results obtained for the one-dimensional radial Coulomb problem.Comment: 8 pages, 4 figures (EPS

    The volume densities of giant molecular clouds in M83

    Get PDF
    Using observed GALEX far-ultraviolet (FUV) fluxes and VLA images of the 21-cm HI column densities, along with estimates of the local dust abundances, we measure the volume densities of a sample of actively star-forming giant molecular clouds (GMCs) in the nearby spiral galaxy M83 on a typical resolution scale of 170 pc. Our approach is based on an equilibrium model for the cycle of molecular hydrogen formation on dust grains and photodissociation under the influence of the FUV radiation on the cloud surfaces of GMCs. We find a range of total volume densities on the surface of GMCs in M83, namely 0.1 - 400 cm-3 inside R25, 0.5 - 50 cm-3 outside R25 . Our data include a number of GMCs in the HI ring surrounding this galaxy. Finally, we discuss the effects of observational selection, which may bias our results.Comment: 9 pages, 11 figure

    p120-catenin prevents multinucleation through control of MKLP1-dependent RhoA activity during cytokinesis.

    Get PDF
    Spatiotemporal activation of RhoA and actomyosin contraction underpins cellular adhesion and division. Loss of cell-cell adhesion and chromosomal instability are cardinal events that drive tumour progression. Here, we show that p120-catenin (p120) not only controls cell-cell adhesion, but also acts as a critical regulator of cytokinesis. We find that p120 regulates actomyosin contractility through concomitant binding to RhoA and the centralspindlin component MKLP1, independent of cadherin association. In anaphase, p120 is enriched at the cleavage furrow where it binds MKLP1 to spatially control RhoA GTPase cycling. Binding of p120 to MKLP1 during cytokinesis depends on the N-terminal coiled-coil domain of p120 isoform 1A. Importantly, clinical data show that loss of p120 expression is a common event in breast cancer that strongly correlates with multinucleation and adverse patient survival. In summary, our study identifies p120 loss as a driver event of chromosomal instability in cancer
    corecore