2,617 research outputs found
Nonadiabatic transitions in a Stark decelerator
In a Stark decelerator, polar molecules are slowed down and focussed by an
inhomogeneous electric field which switches between two configurations. For the
decelerator to work, it is essential that the molecules follow the changing
electric field adiabatically. When the decelerator switches from one
configuration to the other, the electric field changes in magnitude and
direction, and this can cause molecules to change state. In places where the
field is weak, the rotation of the electric field vector during the switch may
be too rapid for the molecules to maintain their orientation relative to the
field. Molecules that are at these places when the field switches may be lost
from the decelerator as they are transferred into states that are not focussed.
We calculate the probability of nonadiabatic transitions as a function of
position in the periodic decelerator structure and find that for the
decelerated group of molecules the loss is typically small, while for the
un-decelerated group of molecules the loss can be very high. This loss can be
eliminated using a bias field to ensure that the electric field magnitude is
always large enough. We demonstrate our findings by comparing the results of
experiments and simulations for the Stark deceleration of LiH and CaF
molecules. We present a simple method for calculating the transition
probabilities which can easily be applied to other molecules of interest.Comment: 12 pages, 9 figures, minor revisions following referee suggestion
The final two redshifts for radio sources from the equatorial BRL sample
Best, Rottgering and Lehnert (1999, 2000a) defined a new sample of powerful
radio sources from the Molonglo Reference Catalogue, for which redshifts were
compiled or measured for 177 of the 178 objects. For the final object,
MRC1059-010 (3C249), the host galaxy is here identified using near-infrared
imaging, and the redshift is determined from VLT spectroscopy. For one other
object in the sample, MRC0320+053 (4C05.14), the literature redshift has been
questioned: new spectroscopic observations of this object are presented,
deriving a corrected redshift. With these two results, the spectroscopic
completeness of this sample is now 100%.
New redshifts are also presented for PKS0742+10 from the Wall & Peacock 2.7
GHz catalogue, and PKS1336+003 from the Parkes Selected Regions. PKS0742+10
shows a strong neutral hydrogen absorption feature in its Lyman-alpha emission
profile.Comment: 4 pages. LaTeX. Accepted for publication in MNRA
Semiclassical time--dependent propagation in three dimensions: How accurate is it for a Coulomb potential?
A unified semiclassical time propagator is used to calculate the
semiclassical time-correlation function in three cartesian dimensions for a
particle moving in an attractive Coulomb potential. It is demonstrated that
under these conditions the singularity of the potential does not cause any
difficulties and the Coulomb interaction can be treated as any other
non-singular potential. Moreover, by virtue of our three-dimensional
calculation, we can explain the discrepancies between previous semiclassical
and quantum results obtained for the one-dimensional radial Coulomb problem.Comment: 8 pages, 4 figures (EPS
The volume densities of giant molecular clouds in M83
Using observed GALEX far-ultraviolet (FUV) fluxes and VLA images of the 21-cm
HI column densities, along with estimates of the local dust abundances, we
measure the volume densities of a sample of actively star-forming giant
molecular clouds (GMCs) in the nearby spiral galaxy M83 on a typical resolution
scale of 170 pc. Our approach is based on an equilibrium model for the cycle of
molecular hydrogen formation on dust grains and photodissociation under the
influence of the FUV radiation on the cloud surfaces of GMCs. We find a range
of total volume densities on the surface of GMCs in M83, namely 0.1 - 400 cm-3
inside R25, 0.5 - 50 cm-3 outside R25 . Our data include a number of GMCs in
the HI ring surrounding this galaxy. Finally, we discuss the effects of
observational selection, which may bias our results.Comment: 9 pages, 11 figure
p120-catenin prevents multinucleation through control of MKLP1-dependent RhoA activity during cytokinesis.
Spatiotemporal activation of RhoA and actomyosin contraction underpins cellular adhesion and division. Loss of cell-cell adhesion and chromosomal instability are cardinal events that drive tumour progression. Here, we show that p120-catenin (p120) not only controls cell-cell adhesion, but also acts as a critical regulator of cytokinesis. We find that p120 regulates actomyosin contractility through concomitant binding to RhoA and the centralspindlin component MKLP1, independent of cadherin association. In anaphase, p120 is enriched at the cleavage furrow where it binds MKLP1 to spatially control RhoA GTPase cycling. Binding of p120 to MKLP1 during cytokinesis depends on the N-terminal coiled-coil domain of p120 isoform 1A. Importantly, clinical data show that loss of p120 expression is a common event in breast cancer that strongly correlates with multinucleation and adverse patient survival. In summary, our study identifies p120 loss as a driver event of chromosomal instability in cancer
Cardiac magnetic resonance imaging analysis in STEMI: quantitative or still visual?
Cardiovascular Aspects of Radiolog
Increased accuracy in computed tomography coronary angiography; a new body surface area adapted protocol
Vascular Biology and Interventio
Use of the anterior-posterior chest diameter in CT: reduction in radiation dose?
Vascular Biology and Interventio
Left ventricular mass assessment by CMR; how to define the optimal index
Vascular Biology and Interventio
- …