4 research outputs found

    High-level diversity of tailed phages, eukaryote-associated viruses, and virophage-like elements in the metaviromes of Antarctic soils

    Get PDF
    The metaviromes of two distinct Antarctic hyperarid desert soil communities have been characterized. Hypolithic communities, cyanobacterium-dominated assemblages situated on the ventral surfaces of quartz pebbles embedded in the desert pavement, showed higher virus diversity than surface soils, which correlated with previous bacterial community studies. Prokaryotic viruses (i.e., phages) represented the largest viral component (particularly Mycobacterium phages) in both habitats, with an identical hierarchical sequence abundance of families of tailed phages (Siphoviridae>Myoviridae>Podoviridae). No archaeal viruses were found. Unexpectedly, cyanophages were poorly represented in both metaviromes and were phylogenetically distant from currently characterized cyanophages. Putative phage genomes were assembled and showed a high level of unaffiliated genes, mostly from hypolithic viruses. Moreover, unusual gene arrangements in which eukaryotic and prokaryotic virus-derived genes were found within identical genome segments were observed. Phycodnaviridae and Mimiviridae viruses were the second-mostabundant taxa and more numerous within open soil. Novel virophage-like sequences (within the Sputnik clade) were identified. These findings highlight high-level virus diversity and novel species discovery potential within Antarctic hyperarid soils and may serve as a starting point for future studies targeting specific viral groups.IS

    Niche-dependent genetic diversity in Antarctic metaviromes

    Get PDF
    The metaviromes from 2 different Antarctic terrestrial soil niches have been analyzed. Both hypoliths (microbial assemblages beneath transluscent rocks) and surrounding open soils showed a high level diversity of tailed phages, viruses of algae and amoeba, and virophage sequences. Comparisons of other global metaviromes with the Antarctic libraries showed a niche-dependent clustering pattern, unrelated to the geographical origin of a given metavirome. Within the Antarctic open soil metavirome, a putative circularly permuted, »42kb dsDNA virus genome was annotated, showing features of a temperate phage possessing a variety of conserved protein domains with no significant taxonomic affiliations in current databases.National Research Foundation (South Africa) and the Genomics Research Institute of the University of Pretoria (South Africa).http://www.tandfonline.com/loi/kbac202015-12-31hb201

    ISSN exercise & sport nutrition review: research & recommendations

    Get PDF
    Sports nutrition is a constantly evolving field with hundreds of research papers published annually. For this reason, keeping up to date with the literature is often difficult. This paper is a five year update of the sports nutrition review article published as the lead paper to launch the JISSN in 2004 and presents a well-referenced overview of the current state of the science related to how to optimize training and athletic performance through nutrition. More specifically, this paper provides an overview of: 1.) The definitional category of ergogenic aids and dietary supplements; 2.) How dietary supplements are legally regulated; 3.) How to evaluate the scientific merit of nutritional supplements; 4.) General nutritional strategies to optimize performance and enhance recovery; and, 5.) An overview of our current understanding of the ergogenic value of nutrition and dietary supplementation in regards to weight gain, weight loss, and performance enhancement. Our hope is that ISSN members and individuals interested in sports nutrition find this review useful in their daily practice and consultation with their clients

    ISSN exercise & sports nutrition review update: research & recommendations

    No full text
    corecore