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Abstract 

The metaviromes of two distinct Antarctic hyperarid desert soil communities have been 

characterized. Hypolithic communities, cyanobacterium-dominated assemblages 

situated on the ventral surfaces of quartz pebbles embedded in the desert pavement, 

showed higher virus diversity than surface soils, which correlated with previous 

bacterial community studies. Prokaryotic viruses (i.e., phages) represented the largest 

viral component (particularly Mycobacterium phages) in both habitats, with an identical 

hierarchical sequence abundance of families of tailed phages 

(Siphoviridae>Myoviridae>Podoviridae). No archaeal viruses were found. 

Unexpectedly, cyanophages were poorly represented in both metaviromes and were 

phylogenetically distant from currently characterized cyanophages. Putative phage 

genomes were assembled and showed a high level of unaffiliated genes, mostly from 

hypolithic viruses. Moreover, unusual gene arrangements in which eukaryotic and 

prokaryotic virus-derived genes were found within identical genome segments were 

observed. Phycodnaviridae and Mimiviridae viruses were the second-most abundant 

taxa and more numerous within open soil. Novel virophage-like sequences (within the 

Sputnik clade) were identified. These findings highlight high-level virus diversity and 

novel species discovery potential within Antarctic hyperarid soils and may serve as a 

starting point for future studies targeting specific viral groups.  

 

Introduction 

Antarctica is the coldest, driest place on Earth (1). Exposed soil areas comprise 

approximately 0.4% of the continent’s surface re mainly located in coastal areas, 

particularly on the Antarctic peninsula and in the McMurdo Dry Valleys (2). These 

mineral soils are exposed to a range of “extreme” abiotic factors, including very low 

temperatures, high soil salinity, low water availability and nutrient levels, high levels of 

UV radiation, and strong, cold winds descending from glaciers or mountain tops 

(katabatic). Due to these conditions, the most morphologically distinct soil communities 

(i.e., type I, II, and III hypoliths) are associated with lithic surfaces (3, 4). Hypolithic 
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communities, occurring on the ventral surfaces of translucent quartz rocks, have been 

shown to be mostly composed of phototrophic cyanobacterial species (5). These 

photoautotroph-dominated communities have been attributed crucial roles within the 

Antarctic soil ecosystem, such as primary productivity and nitrogen input (6, 7). While 

the composition of these communities is now reasonably well understood (8–12), the 

associated viruses, with their potential to influence microbial population dynamics and 

nutrient cycling via viral lysis (13), have yet to be characterized. 

No comprehensive analyses of the collective viral genomic content (i.e., the metavirome) 

of Antarctic soils have yet been published, with the limited number of reported Antarctic 

viral metagenomic studies focusing on aquatic systems (14–16) and Antarctic megafauna 

such as seals (17) and penguins (18). Metaviromic surveys of saline meromictic lakes 

have shown a high level of diversity of virus-like particles (mostly phages) and several 

vi- rophages (15, 16). To date, the few studies of viruses in Antarctic soils have all 

focused on classical phage isolation and lytic induction experiments from culturable 

bacterial species (19–21). Here we report a comprehensive characterization of virus 

diversity us- ing a metagenomic approach in Antarctic desert soils, with a focus on the 

double-stranded DNA (dsDNA) virus composition of two common microhabitats: open 

surface soils and hypolithic communities. 

Materials and methods 

Sampling location. Samples were collected from the Miers Valley, Ross Dependency 

in eastern Antarctica (GPS coordinates, 78°05.6=S, 163°48.6=E) during the austral 

summer period of 2011. For the open- soil sample, 1.5 kg of surface soil (0- to 2-cm 

depth) was collected from an approximately 1-m2 area at a single location. The hypolith 

sample consisted of 0.5 kg of hypolith scrapings gathered aseptically from a collection of 

cyanobacterial-type hypoliths (n > 50) from an area of approximately 50 m2. The open-

soil sample was recovered from within this area. Sampes were transferred and stored in 

sterile Whirl-Pak bags (product no. B01445WA; Nasco) at below 0°C in the field and 

during transport and at -80°C in the laboratory. 

Sample processing, DNA extraction, and sequencing. Processing of both types 

of samples was performed similar to the methods in reference 22. Both the open-soil 

sample and pooled hypolithic samples were suspended in 3 liters of deionized water and 

shaken vigorously. The solids were allowed to settle, and the supernatant was decanted. 

The process was repeated, and both supernatants were mixed. The supernatant was 

centrifuged at 1,593 X g for 10 min (Beckman JA10 rotor), decanted, and passed 

through a 0.22-µm filter (Stericup [500 ml, 0.22 µm]; catalog no. SCGPU05RE; 

Millipore). Virus particles were collected from the filtrate by centrifugation in a 

Beckman JA20 rotor at 43,667 X g for6h in autoclaved 30-ml Nalgene polypropylene 

copolymer (PPCO) tubes (catalog no. 3119-0030). The 6 liters was spun down by 
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discarding the supernatant from each 30-ml tube (8 tubes in a JA20 rotor) after a round 

of centrifu- gation and then adding another 30 ml of the extract to the tube. The 

individual pellets were resuspended in 3 ml successively: the first pellet was 

resuspended in 3 ml Tris-EDTA (TE) buffer, the liquid was then transferred to the next 

tube, the pellet was resuspended properly and then transferred to the next tube and so 

on until all pellets were resuspended. The pellets were treated with DNase I (catalog no. 

EN0521; Fermentas) and RNase A (catalog no. EN0531; Fermentas) to a final 

concentration of 0.1 µg/ml at 37°C for 1 h. The presence of bacterial DNA was checked 

by amplifying the 16S rRNA gene (primers E9F and U1510R [23, 24]) as follows: 1 µl of 

genomic DNA was mixed with 2.5 µl of each primer (10 mM), 2.5 µl of2 µM 

deoxynucleoside triphosphates (dNTPs), 2.5 µl of 10X DreamTaq buffer (ThermoFisher 

Scientific, MA, USA), 1 µl of 10- mg/ml bovine serum albumin (BSA), 0.125 µl 

DreamTaq polymerase (ThermoFisher Scientific, MA, USA), and Milli-Q water to a total 

volume of 25 µl. PCR was conducted under the following thermal regime: (i) 5 min at 

95°C; (ii) 30 cycles, with 1 cycle consisting of 30 s at 95°C, 30 s at 52°C, and 85 s at 

72°C; and (iii) 10 min at 72°C. The virus suspension was treated with proteinase K 

(Fermentas) at a final concentration of 1 µg/ml at 55°C for 2 h. Seventy microliters of 

SDS (20%) was added and incubated at 37°C for 1 h. Nucleic acids were purified by 

performing two rounds of phenol-chloroform-isoamyl alcohol (25:24:1) extraction fol- 

lowed by chloroform-isoamyl alcohol (24:1) phase separation. DNA was precipitated by 

the addition of 1/10 volume of sodium acetate (3 M; pH 5.2) and 2 volumes of 100% 

ethanol and left overnight at 4°C. Samples were centrifuged at 29,000 X g for 10 min 

to pellet the DNA, which was resuspended in 30 µl of TE buffer. The DNA was further 

cleaned using the Qiagen gel extraction kit (Qiaex II; catalog no. 20021; Qiagen). Ten 

nano- grams of each sample was then used to perform Phi29 amplification (GenomiPhi 

HY DNA amplification kit; catalog no. 25-6600-20; GE Healthcare) using the 

manufacturer’s recommendations. Library preparation included a 10% phiX V3 spike 

per the manufacturer’s instructions (25) with the Illumina Nextera XT library prep 

kit/MiSeq reagent kit V2. The amplified DNA was sequenced (2X [forward and reverse 

sequencing] 250-bp reads, ~250-bp average insert size) on the Illumina MiSeq se- 

quencer platform located at the University of the Western Cape, Cape Town, South 

Africa. 

Sequence data analysis. Sequence reads were curated for quality control and adapter 

trimmed using CLC Genomics version 6.0.1 (CLC, Den- mark), using the default 

parameters. Unpaired reads were aligned against each other using Bowtie under default 

parameters. De novo assembly for each read data set was performed with both CLC 

Genomics and DNASTAR Lasergene SeqMan assembler suite using the default 

parameters. Reads and contigs were uploaded to the MetaVir (26) version 2 server 

(http://metavir-meb.univ-bpclermont.fr/) and MG-RAST (27) 
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(http://metagenomics.anl.gov/) server for virus diversity estimations (data available 

from these webservers). Taxonomic composition by MetaVir was computed from a 

BLAST comparison with the RefSeq complete viral genome protein sequence database 

from NCBI (1 May 2013 release) using BLASTp with a threshold of 10-5 on the E value. 

Assembled reads were searched for open reading frames (ORFs) and compared to the 

RefSeq complete viral database (through the MetaVir pipeline) and MG-RAST, which 

include annotations using the following databases, for functional and organism 

assignment: GenBank, Integrated Microbial Genomes (IMG), Kyoto Encyclopedia of 

Genes and Genomes (KEGG), Pathosystems Resource Integration Center (PATRIC), 

RefSeq, SEED, Swiss-Prot, tremble, and eggnog. The subset of affiliated (i.e., predicted 

genes with a database match) contigs generated by CLC Genomics were compared to the 

contigs generated by LaserGene using BLASTx under standard parameters. For the 

assignment of functional hierarchy, COG (clusters of or- thologous groups), KEGG 

Orthology (KO), and NOG databases were used. Guanine-plus-cytosine (G+C) content 

was determined by importing .fasta files into BioEdit (28). The presence of tRNAs in 

annotated 

 

 contigs was assessed with the tRNAscanSE software accessible through 

http://lowelab.ucsc.edu/tRNAscan-SE/ (29). For prediction of phage life-style and host 

Gram stain reaction, whole-genome protein sequences of candidate phage genomes 
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were submitted to the online version of PHACTS 

(http://www.phantome.org/PHACTS/) (30). Aligned marker genes showing sufficient    

homology (>150 bp; MetaVir) against the contigs were recovered, and phylogenetic 

analysis was performed using MEGA5 (http://www.megasoftware.net/). Rooted 

dendrograms were inferred using the maximum likelihood method with a bootstrap test 

of 1,000 pseudoreplicates. Phylogenetic analysis for virophage sequences was performed 

independently from MetaVir. Metavirome virophage amino acid sequences, as well as 9 

virophage major capsid protein (MCP) sequences obtained from the NCBI GenBank 

database were aligned with the online version of MAFFT version 7 

(http://mafft.cbrc.jp/alignment/software/). Tree construction was conducted as 

outlined by Zhou et al. (31). 

Accession numbers. These sequence data have been submitted to the 

DDBJ/EMBL/GenBank databases (sequence read archive [SRA]) under study accession 

no. SRP038018 (hypolith library) and no. SRP035457 (open-soil library). 

 

Results 

Viral diversity estimations. The presence of bacterial contamination was deemed 

negligible in both metavirome libraries (using the 16S gene fragment), as no discernible 

bands of amplified products were obtained. MiSeq reads ranged from 236 to 241 bp, 

with an overall higher G+C content within reads obtained from the open-soil library. 

Sequencing metadata, assembly metrics, and BLASTp searches are summarized in Table 

1. BLASTx comparison of contig data sets from both habitat libraries (generated by two 

separate assemblers) revealed that 99.41% (hypolith library) and 99.5% (open-soil 

library) of affiliated contigs were shared between the two assembled read data sets. 

Contigs from CLC Genomics were used for the remainder of the analysis. Aligned 

against each other, libraries contained 66.01% of reads that were unique to each habitat, 

while 33.99% were shared (a read aligned at least once). In both read data sets, bacteria 

were the most rep- resented hits (80.7 to 94.5%). However, these estimations varied 

depending on the metagenomic platform used and whether reads or contigs were 

submitted. BLASTp searches of the MetaVir server using contigs produced significantly 

more virus-related hits compared to searches of the MG-RAST server. For example, 

1.9% of the open-soil contigs were predicted to be viral in origin in MG-RAST, while 

MetaVir with the same data set predicted 18.8%. The same was true for the hypolith 

library, where MG-RAST pre- dicted 12.8% for viruses, while MetaVir predicted 19.2%. 

Archaea, Eukaryota, and “other” represented the smallest fraction, while viruses 

(particularly in hypolith) were second in terms of contig affiliations (Fig. 1). Total 

diversity (ex-diversity) was computed by MG-RAST using normalized values, since 

unequal distribution of reads between open-soil and hypolith libraries were obtained. 
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The hypolith library was 3-fold more diverse than the open-soil library (344.5 versus 

1,058.4 species). In contrast, the open soil showed higher taxonomic abundance (species 

evenness, -y-diversity) com- pared to the hypolith (15,663 versus 11,480; Table 2). 

Proteobac- teria and Firmicutes were the most abundant in both libraries, with viruses 

in hypolith the third-most-abundant organisms. 
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Rarefaction curves generated by MG-RAST (see Fig. S1 in the supplemental material) 

showed that the hypolith library was sampled more comprehensively compared to the 

open-soil library. Nineteen virus families were identified by MetaVir (Table 3), in which 

prokaryotic viruses were the most abundant in both habitats (76.0% in open soil and 

82.3% in hypolith). Identified phages were dominated by the order Caudovirales in the 

following abundance ranking (identical for both habitats): Siphoviridae > Myoviridae > 

Podoviridae. The next most highly represented virus families were Mimiviridae and 

Phycodnaviridae, both more numerous in the open-soil sample. Viral parasites of large 

dsDNA viruses, i.e., virophages (32), were exclusively identified in the open-soil habitat. 

Signatures from Adenoviridae, Bicaudaviridae, Hytrosaviridae, Retroviridae, and 

Rudiviridae were found in low numbers in the hypolith habitat only. Both habitats 

contained 13.5 to 15.1% of sequences identified as unclassified viruses. 

Due to the lack of universal markers for viruses (such as the 16S rRNA gene marker used 

for bacteria or the 18S rRNA gene marker for eukaryotes), markers targeting virus 

families/species were used instead as an alternative to improve taxonomic affiliation of 

the annotated ORFs from both assembled reads (contigs) and reads alone. Sequences 

with significant homology to reference markers are shown in Table S1 in the 

supplemental material. The large terminase subunit (terL) marker, required for 

packaging initiation in members of the Caudovirales (33), was the most common match 

in both habitats. This was consistent with the taxonomic affiliations of contigs in the 
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virus families shown in Table 3. Non- bacterial viruses (such as Paramecium bursaria 

chlorella virus and Emiliana huxleyi virus, which belong to the family Phycodnaviri- 

dae, and invertebrate viruses belonging to the family Ascoviridae), identified with the 

major capsid protein (MCP) and DNA polymerase family B (polB) gene markers, were 

found exclusively within the open-soil community. For virophage-related sequences, 5 

candidate ORFs were submitted to a tBLASTn query 

 

and showed closest similarity to the Zamilon (34) and Sputnik (32) virophages, both 

isolated from soil and aquatic environments, respectively. We attempted to determine 

its phylogenetic relationship, as among the very few currently recognized virophages, 

one has been isolated from Organic Lake, Antarctica. Among these ORFs, a partial MCP 

sequence (344 amino acids long) was identified and aligned with other known virophage 

MCP sequences (31). The MCP tree in Fig. S2 in the supplemental material shows a 

clustering pattern identical to the tree in reference 31 and indicates that the virophage 

sequence from open soil (Miers Valley soil virophage [MVSV]) belonged to the Sputnik 

virophage group (cluster 1) and was not more closely related to its Antarctic 

counterpart. Its position within the tree suggests that MVSV shares a genetically distant 

ancestor with Sputnik and Zamilon virophages. 
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No reads with significant homology to the psbA gene (a marine cyanophage 

photosynthesis-related gene) were identified. How- ever, other cyanophage sequences 

were detected within the g20 and phoH phylogenies from the hypolith data set alone 

(Fig. 2), present as highly divergent sequences at the root of cyanophage sequence 

clusters. A summary of marker-identified phage species for each marker is shown in 

Table S2 in the supplemental material. Functional composition of hypoliths and 

open soil. The hypolith data set was highly uncharacterized (predicted proteins with 

no significant homologs), with 81.3% compared to the open soil with 58.5%. Twenty-six 

functional categories were assigned to both libraries (Fig. 3), each subdivided into 

distinct subsystems. Apart from the phage category, functional abundance in all 

categories was greater in open soil. Highest abundance variations be- tween both 

biotopes included several metabolic pathways involving phosphorus, nitrogen, aromatic 

compounds, and iron metabolism. Dormancy and sporulation-related functions were 

also notably higher in the open soil. A similar trend was found for stress-related 

functions, including oxidative, osmotic, and acid stress. However, found almost 

exclusively in the hypolith library were desiccation stress-related protein functions. 

Virus-specific functional components were retrieved manually from the Meta-Vir server, 

counted, and classified into several virus component categories, shown in Table S3 in 

the supplemental material. Both habitat samples contained genes encoding numerous 

virus structural proteins (portal, tape measure, and capsid) and enzymes (terminases, 

DNA/RNA polymerases, helicases, and lysins), consistent with an abundance of tailed-

phage-related components. 

Due to the large number of assembled contigs, a subset of 26 were selected for further 

analysis (see Table S4 in the supple- mental material) based on a combination of 

criteria: size (≥10,000 bp), percentage of annotated ORFs within a contig (11 to 100%), 

and predicted circularity of the putative genome. 
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On average, the percentage of homologous genes from public databases was 40.2 ± 21.2 

in open soil and 31.9 ± 12.5 in the hypolith. The average values for G+C content in open-

soil and hypolith contigs were 55.6% ± 7.3% and 44.3% ± 3.2%, respectively. Phage 

genomes were submitted to PHACTS (30) for lifestyle (temperate or lytic) and host 

Gram reaction prediction. As a general trend for both habitats, putative temperate 

phages dominated (61.5%), while the predicted host range was 88.5% Gram negative. 

These predictions are supported by a recent study (35), which reported that Gram-

negative Proteo-bacteria were the dominant phylum in hypolithic and open-soil 

habitats within the McMurdo Dry Valleys. 

For the open-soil habitat alone, contigs contained genes from two  virus  families  

infecting  algae  (Phycodnaviridae-like)  and amoeba (Mimiviridae-like), positioned 

between phage-related genes. The largest contig (AntarOS_1 [Antar stands for 

Antarctic, and OS stands for open soil], 177,571 bp) contained one gene from 

Acanthamoeba polyphaga mimivirus and one from Parame-cium bursaria chlorella 

virus A1, while the rest of the genes were phage related. Several core genes (36) from the 

nucleocytoplasmic large DNA viruses (NCLDVs) were identified in the open soil (also to 

a lesser extent in the hypolith library) contig data set. These core genes included 

topoisomerase II, RNA polymerase subunit 2, guanylyltransferase, RuvC, dUTPase 2, 

thymidylate kinase, MutT/ NUDIX motif, and ankyrin repeat genes. A hybrid gene 

arrangement from different viruses was found in another contig, AntarOS_17 (Fig. 4). 

This 24,870-bp contig was divided into 30 predicted ORFs, 21 of which showed signifi      

homology to virus genes in the RefSeq database (detailed BLAST results for individual 

ORFs can be found in Table S5 in the supplemental material). Of the 30 predicted ORFs 

from gene 11 to gene 30 but excluding gene 18, 67% showed significant homology at the 

amino acid level with a single microalga-infect- ing virus species (unclassifi  Tetraselmis 

viridis virus S1, GenBank accession no. NC_020869.1). Genes 4 to 8, 10, and 18 showed 

similarity to several phages infecting Burkholderia, Rhodobacter, and Azospirillum 

species. The genome size was too short to be considered phycodnavirus-like (37) and 

possessed phage genes that were in usual functional synteny toward phage head 

maturation (such as terS, terL, and the capsid protein gene [within ORFs 4 to 8]). A 

tBLASTn search using the protein sequence of the terL gene against the NCBI nr 

database showed highest similarity (34 to 35% identity, E value of 6 X 10-76) to various 

Streptococcus phi phages, including SsUD1, m46.1, and D12. To verify that this contig 

did not result from read misassembly (i.e., chimeric), two sets of primers were designed 

to amplify fragments from the over- lapping region between ORF 10 and ORF 11, which 

based on the contig annotations, appeared to delineate two gene sets from different 

viruses. Amplicons of expected sizes were obtained and sequenced bidirectionally by 

Sanger technology. The sequenced fragments aligned with their respective regions, 

which indicated that this contig region was correctly assembled. 
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Phage-host associations. As both habitats showed a high level of diversity of phage-

related sequences, taxonomic affiliation of the reads (marker gene independent) were 

categorized according to host and relative sequence abundances in both habitat samples 

(Fig. 5). Phage sequences identified most closely to host species spanning 5 bacterial 

phyla: Firmicutes (7 bacterial genera), Proteobacteria (8 bacterial genera), 

Cyanobacteria (3 bacterial genera), Bacteroidetes (Flavobacterium), and 

Actinobacteria (4 bacterial genera). By com- paring the bacterial operational taxonomic 

unit (OTU) distributions in the same soil environments generated by Makhalanyane et 

al. (35), we attempted to correlate presence/absence of bacterial OTUs based on the 

phage sequences obtained. Additionally, we included in our comparison 454 

sequencing-based soil metagenomic data of Pearce et al. (38), who surveyed moraine 

soil collected from the margins of a permanent melt water pond located at Mars Oasis 

on Alexander Island, west of the Antarctic Peninsula. On the basis of identified phage 

species, only members of Firmicutes were found in both soil habitats in this study, but 

not in the 16S/terminal restriction fragment length polymorphism (TRFLP) bacterial 

data of Makhalanyane et al. (35). This discrepancy between phage and bacterial data 

was also observed for hypoliths in hot desert soils (22). The other major bacterial phyla 
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(Proteobacteria, Cyanobacteria, Bacteroidetes, and Actinobacteria) 

were present in both the metavirome data and 16S/TRFLP sequence data. However, 

bacterial genera indirectly identified by their phages from this study, were all found in 

the survey by Pearce et al. (38). 
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At the level of individual phages, Lactococcus and Mycobacte-rium phage sequences 

were most common in the hypolith sample (>10%), whereas in open soil, the largest 

fraction (>6%) was composed of Bacillus, Pseudomonas, and Mycobacterium phage 

sequences. Few phage host species could be linked to the 16S/ TRFLP data, but at the 

phylum level, Proteobacteria and Actino-bacteria were present in both data sets. 

Caulobacter and Flavobac-terium were both found in this study (identified by their 

phage) and 16S/TRFLP data. However, the top 10 virus fraction obtained by Pearce et 

al. (38) was similar to that found in this study, where Mycobacterium phages ranked 

first (in the case of the hypolith 

 

sample), but also included Pseudomonas, Enterobacteria, Flavo-bacterium, and 

Synechococcus phages. 

 

Discussion 

Unlike aquatic ecosystems which have received considerable attention since the advent 

of viral metagenomics (39), diversity of virus in many soil habitats has not been 

characterized extensively. In studies of Antarctic continental microbiology, only 

freshwater lake metaviromes have been reported thus far (14, 15). Recent phylogenetic 

studies of Antarctic Dry Valley soils have shown that hypolithic communities represent 

the most biodiverse and com- plex biological assemblages in this hyperarid soil biome 

(3). Diversity estimations generated from our data (including viruses) suggest a similar 

pattern (3-fold-higher diversity compared to open soil). Furthermore, read libraries 

shared a mere 33% similarity overlap, indicating that hypolithic communities are 

distinct and differ from their surroundings. This uniqueness, coupled with its higher 

microbial diversity, may make hypolithic communities biodiversity “micro-hot spots” 

in this hyperarid desert. A large fraction of ORFs (62.5 to 84.5%) from both soil habitat 

samples had no significant homologs in public sequence databases, also observed in 

another published soil metavirome (40). Rarefaction curves indicated that the open-soil 

biotope has not been sampled sufficiently, and therefore, a greater sequencing depth 

would be advisable in future metagenome experiments for this habitat. 
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Taxonomic/functional affiliation of predicted ORFs and gene marker analyses (e.g., 

using terL) were consistent with the conclusion that tailed bacteriophages were the 

primary virus component in both soil habitats. Furthermore, an identical family-specific 

hi- erarchical abundance was observed for both habitats (Siphoviridae> Myoviridae > 

Podoviridae) but with a higher sequence diversity in hypolith communities. Compared 

to other virus groups, phage sequences were predictably overrepresented in both 

metaviromes, given that the biotic component in these soils is dominated by prokaryotes 

(9). However, we note that our nucleic acid extraction method would exclude RNA 

viruses (either single or double stranded), and therefore, we do not claim that our data 

reflect the complete viral diversity in these soil habitats. As a sampling bias, viruses in a 

prophage state may constitute a large (and unsurveyed) proportion of the dsDNA phage 

diversity, given that it has been reported (19) that many soilborne bacteria appear to 

contain prophages, including those from Antarctic soils. Conversely, our data suggest 

that ~61% of phage assemblages are temperate. 

Very few archaeal virus signatures were found in either soil habitat, consistent with 

previous prokaryote diversity studies (9, 35). Unexpectedly, cyanophages were poorly 

represented in the hypolith sample (in terms of sequence abundance and diversity). 

Given the dominance of cyanobacteria in type I hypoliths (10, 12), it was reasonably 

predicted that cyanophages would represent a 

 

major clade. The apparent success of cyanobacteria as dominant elements of the 

hypolithic community might possibly be linked to the low abundance of associated 

viruses (where the levels of phage infection of other bacterial groups such as 

mycobacteria, Bacillus, Flavobacterium, and pseudomonads were higher and their host 

populations were under tighter predation control). However, this is in contradiction to 

the general understanding that the most abundant phage groups in any given 

https://repository.uwc.ac.za



16 
 

environment reflect the abundance of microbial community members found in that 

environment (41). Thus, while it is possible that cyanophages genuinely represent a 

minor component of phage diversity, we suggest that this result is an artifact of the 

substantial underrepresentation of soil-associated cyanophage genome sequences in 

public data- bases, further accentuated by the fact that most characterized cyanophages 

are of aquatic origin (42). To our knowledge, only a small fraction of cyanophages of soil 

origin have been described thus far (43), which also reported a high phylogenetic 

distance from “common” marine cyanophages, emphasizing the fact that little is 

known about these cyanophages. In support of this, cyanophage communities in paddy 

field soils have been shown to be different from those in freshwater, marine water, and 

even paddy floodwater, identifying unique g20 subclusters specific to soil-de- rived 

cyanophages (43). In the current study, marker gene analysis successfully identified 

several metavirome sequences at the root of cyanophage clusters, suggesting that these 

represent novel phage phylotypes with a high genetic distance from currently character- 

ized cyanophages. The high abundance of phages infecting certain bacterial genera such 

as Mycobacterium, Lactococcus, Bacillus, and Pseudomonas phages (~6 to 10% of all 

identified phage sequences) in both Antarctic desert soil habitats has been reported by 

Pearce et al. (38). 

Sequences with close homology to large dsDNA eukaryotic virus families such as 

Mimiviridae and Phycodnaviridae-like genomic elements were found as the second 

largest virus compo- nent (0.88% to 4.33%) in both habitats (excluding the 

unclassifiable virus fraction [13.5% to 15.1%]). Mimivirus-related sequences were 

unexpected, as a 0.22-µm filter size should have excluded large virus particles (~0.7 µm 

[44]), as well as repeated centrifugation steps. Phycodnaviruses, at ~0.16 ± 0.06 µm 

(45), would be expected to be recovered in the filtrate. However, detection of MCP 

components from a novel Sputnik-like virophage, a parasite of large dsDNA viruses 

(32), provided further indirect evidence for the presence of mimivirus-like populations 

in the open-soil habitat. In addition, the identified virophage sequence was more closely 

related to geographically distant isolates (France and Tunisia) compared to the other 

virophage isolate from Organic Lake in Antarctica. A recent study (38) showed 

sequences belonging to both host genera (Paramecium, Chlorella, and Acan- 

thamoeba) and their associated viruses (chlorovirus and mimivirus) in moraine 

Antarctic soil. La Scola et al. (46) first demonstrated the  presence of  mimiviruses in  

soil (previously  only isolated from aquatic habitats). The present metavirome se- 

quences, combined with pyrosequencing data of metagenomic libraries from Pearce et 

al. (38), provide additional evidence for the presence of mimivirus-like genome 

elements in Antarctic soils. Further sampling to isolate virophages from Antarctic soils 

would provide further understanding into the ecology and function of these infectious 

agents, given that their contributions into the regulation of viral populations are starting 

to become apparent in other habitats (34). The unusual gene configuration observed 
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within contig AntarOS_17 (where phage and eukaryotic viruses were predicted) was 

confirmed by PCR on the original DNA sam- ple, therefore ruling out misassembly of 

the reads for this region. Most likely, this was caused by misannotation of the predicted 

ORFs, caused by a lack of closer homologs in databases. While read misassembly is still 

a possibility in other generated contigs, confidence level in assembly accuracy was high, 

as the Illumina sequencing control used in both runs was phiX174 (a ~5,000-bp single 

stranded DNA [ssDNA] virus) which was reassembled almost completely (99.7%) and 

correctly annotated by the MetaVir pipeline. 

Virus families representing less than 0.5% of sequence abundance (Table 3) included 

those infecting infected Diptera, arthropods, and other invertebrates and were mostly 

found in the open- soil habitat. As these hosts have been shown to occur on the 

Antarctic peninsula (47, 48), this may represent an additional pool of uncharacterized 

viruses within the Antarctic invertebrate fauna. 

A positive correlation between phage genera from this study and their associated hosts 

identified in other bacterial diversity studies was established (35, 38, 49, 50). As in 

previous hypolith/ open-soil community diversity (ex-diversity) comparisons 

(Makhalan- yane et al. [35]), where hypoliths showed ahigher degree of diversity than 

open soil, the same was demonstrated to be true for their associated vi- ruses. 

This study represents an initial broad survey of virus diversity in Antarctic hyperarid 

desert soils and has demonstrated that these local virus assemblages are highly diverse 

and largely un- characterized. Due to a huge gap in terms of homologous sequences in 

databases at this time, the generation of additional metagenomic sequence data is not 

likely to yield usable information. This emphasizes the need for more “traditional” 

studies, performed in parallel on identical sample sources. These include morphological 

data from microscopy, lytic induction (e.g., mitomycin C) upon raw soil, and Sanger 

sequencing of clones targeting specific virus families. Unfortunately, a large fraction will 

most likely remain uncharacterizable in vitro, as the majority of their hosts (bacteria in 

particular) remain unculturable. Larger eukaryotic viruses infecting algae, amoebae, and 

invertebrates have not previously been characterized in this environment, and our data 

demonstrate that these viruses represent an unknown virus population that awaits 

characterization. Such data would further advance our understanding of the trophic 

structure and function of communities inhabiting this cold, hyperarid desert biome. 
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