11 research outputs found
Vibrational Lifetime of the SCN Protein Label in H2O and D2O Reports Site-Specific Solvation and Structure Changes during PYP's Photocycle
© 2019 American Chemical Society.The application of vibrational labels such as thiocyanate »(-S-CN) for studying protein structure and dynamics is thriving. Absorption spectroscopy is usually employed to obtain wavenumber and line shape of the label. An observable of great significance might be the vibrational lifetime, which can be obtained by pump probe or 2D-IR spectroscopy. Due to the insulating effect of the heavy sulfur atom in the case of the SCN label, the lifetime of the CN oscillator is expected to be particularly sensitive to its surrounding as it is not dominated by through-bond relaxation. We therefore investigate the vibrational lifetime of the SCN label at various positions in the blue light sensor protein Photoactive Yellow Protein (PYP) in the ground state and signaling state of the photoreceptor. We find that the vibrational lifetime of the CN stretching mode is strongly affected both by its protein environment and by the degree of exposure to the solvent. Even for label positions where the line shape and wavenumber observed by FTIR are barely changing upon activation of the photoreceptor, we find that the lifetime can change considerably. To obtain an unambiguous measure for the solvent exposure of the labeled site, we show that it is imperative to compare the lifetimes in H2O and D2O. Importantly, the lifetimes shorten in H2O as compared to D2O for water exposed labels, while they stay largely the same for buried labels. We quantify this effect by defining a solvent exclusion coefficient (SEC). The response of the label's vibrational lifetime to its solvent exposure renders it a suitable universal probe for protein investigations. This applies even to systems that are otherwise hard to address, such as transient or short-lived states, which could be created during a protein's working cycle (as here in PYP) or during protein folding. It is also applicable to flexible systems (intrinsically disordered proteins), protein-protein and protein-membrane interaction
Ultrafast photoconversion dynamics of the knotless phytochrome SynCph2
The family of phytochrome photoreceptors contains proteins with different domain architectures and spectral properties. Knotless phytochromes are one of the three main subgroups classified by their distinct lack of the PAS domain in their photosensory core module, which is in contrast to the canonical PAS-GAF-PHY array. Despite intensive research on the ultrafast photodynamics of phytochromes, little is known about the primary kinetics in knotless phytochromes. Here, we present the ultrafast Pr ⇆ Pfr photodynamics of SynCph2, the best-known knotless phytochrome. Our results show that the excited state lifetime of Pr* (~200 ps) is similar to bacteriophytochromes, but much longer than in most canonical phytochromes. We assign the slow Pr* kinetics to relaxation processes of the chromophore-binding pocket that controls the bilin chromophore’s isomerization step. The Pfr photoconversion dynamics starts with a faster excited state relaxation than in canonical phytochromes, but, despite the differences in the respective domain architectures, proceeds via similar ground state intermediate steps up to Meta-F. Based on our observations, we propose that the kinetic features and overall dynamics of the ultrafast photoreaction are determined to a great extent by the geometrical context (i.e., available space and flexibility) within the binding pocket, while the general reaction steps following the photoexcitation are most likely conserved among the red/far-red phytochromes
Lessons from combined experimental and theoretical examination of the FTIR and 2D-IR spectroelectrochemistry of the amide I region of cytochrome c
ABSTRACTAmide I difference spectroscopy is widely used to investigate protein function and structure changes. In this article, we show that the common approach of assigning features in amide I difference signals to distinct secondary structure elements in many cases may not be justified. Evidence comes from Fourier transform infrared (FTIR) and 2D-IR spectroelectrochemistry of the protein cytochrome c in the amide I range, in combination with computational spectroscopy based on molecular dynamics (MD) simulations. This combination reveals that each secondary structure unit, such as an alpha-helix or a beta-sheet, exhibits broad overlapping contributions, usually spanning a large part of the amide I region, which in the case of difference absorption experiments (such as in FTIR spectroelectrochemistry) may lead to intensity-compensating and even sign-changing contributions. We use cytochrome c as the test case, as this small electron-transferring redox-active protein contains different kinds of secondary structure units. Upon switching its redox-state, the protein exhibits a different charge distribution while largely retaining its structural scaffold. Our theoretical analysis suggests that the change in charge distribution contributes to the spectral changes and that structural changes are small. However, in order to confidently interpret FTIR amide I difference signals in cytochrome c and proteins in general, MD simulations in combination with additional experimental approaches such as isotope labeling, the insertion of infrared labels to selectively probe local structural elements will be required. In case these data are not available, a critical assessment of previous interpretations of protein amide I 1D- and 2D-IR difference spectroscopy data is warrante
Infrared pre-excitation grants isotopomer-specific photochemistry
Species-selective photochemistry is often hampered by overlapping UV-Vis spectra. We overcome this long-standing problem by combined vibrational and electronic excitation as demonstrated by isotopomer selection. The influence of various factors on selectivity is discussed
Infrared pre-excitation grants isotopomer-specific photochemistry
Species-selective photochemistry is often hampered by overlapping UV-Vis spectra. We overcome this long-standing problem by combined vibrational and electronic excitation as demonstrated by isotopomer selection. The influence of various factors on selectivity is discussed
Infrared pre-excitation grants isotopomer-specific photochemistry
Species-selective photochemistry is often hampered by overlapping UV-Vis spectra. We overcome this long-standing problem by combined vibrational and electronic excitation as demonstrated by isotopomer selection. The influence of various factors on selectivity is discussed
Controlling Photochemistry via Isotopomers and IR Pre-excitation
It
is a photochemist’s dream to be able to photoinduce a
reaction of a specific molecular species in an ensemble of similar
but not identical ones. The problem is that similar molecules often
exhibit nearly identical UV–Vis absorption spectra, making
them difficult or impossible to distinguish or to select spectroscopically.
The ultrafast VIPER (VIbrationally Promoted Electronic Resonance)
pulse sequence allows to pick a single species for electronic excitation
based on its infrared spectrum. The latter usually shows more features,
allowing the discrimination between species than the UV–Vis
spectrum. Here, we show that it is possible to induce and monitor
species-selective photochemistry even for molecules with virtually
identical UV–Vis spectra, which is the case for isotopomers.
Next to isotope-selective photochemistry in solution, applications
to orthogonal photo-uncaging and species-selective spectroscopy and
photochemistry in mixtures are within reach