35 research outputs found

    The synergistic action of imidacloprid and flumethrin and their release kinetics from collars applied for ectoparasite control in dogs and cats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The control of tick and flea burdens in dogs and cats has become essential to the control of important and emerging vector borne diseases, some of which are zoonoses. Flea worry and flea bite hypersensitivity are additionally a significant disease entity in dogs and cats. Owner compliance in maintaining the pressure of control measures has been shown to be poor. For these reasons efforts are continuously being made to develop ectoparasiticides and application methods that are safe, effective and easy to apply for pet owners. A new polymer matrix collar has recently been developed which is registered for 8 months use in cats and dogs. The basic properties of this collar have been investigated in several <it>in vitro </it>and <it>in vivo </it>studies.</p> <p>Methods</p> <p>The effects of imidacloprid, flumethrin and the combination were evaluated in vitro by means of whole cell voltage clamp measurement experiments conducted on isolated neuron cells from <it>Spodoptera frugiperda</it>. The in vitro efficacy of the two compounds and the combination against three species of ticks and their life stages and fleas were evaluated in a dry surface glass vial assay. The kinetics of the compounds over time in the collar were evaluated by the change in mass of the collar and measurement of the surface concentrations and concentrations of the actives in the collar matrix by HPLC. Hair clipped from collar treated dogs and cats, collected at various time points, was used to assess the acaricidal efficacy of the actives ex vivo.</p> <p>Results</p> <p>An <it>in vitro </it>isolated insect nerve model demonstrated the synergistic neurotoxic effects of the pyrethroid flumethrin and the neonicotinoid imidacloprid. An <it>in vitro </it>glass vial efficacy and mortality study against various life stages of the ticks <it>Ixodes ricinus, Rhipicephalus sanguineus </it>and <it>Dermacentor reticulatus </it>and against the flea (<it>Ctenocephalides felis</it>) demonstrated that the combination of these products was highly effective against these parasites. The release kinetics of these actives from a neck collar (compounded with 10% imidacloprid and 4.5% flumethrin) was extensively studied in dogs and cats under laboratory and field conditions. Acaricidal concentrations of the actives were found to be consistently released from the collar matrix for 8 months. None of the collar studies in dogs or cats were associated with any significant collar related adverse event.</p> <p>Conclusion</p> <p>Here we demonstrated the synergism between the pyrethroid flumethrin and the neonicotinoid imidacloprid, both provided in therapeutically relevant doses by a slow release collar matrix system over 8 months. This collar is therefore a convenient and safe tool for a long-term protection against ectoparasites.</p

    Prevalence of herds with young sows seropositive to pseudorabies (Aujeszky&#039;s disease) in northern Belgium.

    No full text
    &lt;p&gt;In Belgium, pseudorabies in swine has been the subject of a mandatory eradication programme since 1993. From December 1995 to February 1996, a survey was conducted in the five provinces of northern Belgium to estimate the provincial pseudorabies virus (PRV) herd seroprevalence. Seven hundred and twenty randomly selected herds were included in this survey. To detect recently infected animals, only young sows were sampled. The results show that 44% of these herds had an important number of PRV-seropositive young sows. The highest herd seroprevalence was observed in West Flanders (68%), followed by Antwerp (60%), East Flanders (43%), Limburg (18%), and Flemish Brabant (8%). Assuming a diagnostic test sensitivity and specificity of 95% and 99%, respectively, and a true PRV within-herd prevalence of 43%, the overall true PRV herd prevalence was estimated to be 35%. A logistic multiple-regression revealed that the presence of finishing pigs was associated with a two-fold increase in odds of a herd being seropositive (odds ratio (OR)=2.07, 95% confidence interval (CI) = 1.31-3.26); a breeding herd size &gt; or =70 sows was associated with a four-fold increase in odds of a herd being seropositive (OR = 4.09, 95% CI = 2.18-7.67); a pig density in the municipality of &gt;455 pigs/km2 was associated with a 10-fold increase in odds of a herd being seropositive (OR = 9.68, 95% CI = 5.17-18.12). No association was detected between the PRV herd seroprevalence and purchase policy of breeding pigs (purchased gilts, or use of homebred gilts only).&lt;/p&gt;</p

    Prevalence of herds with young sows seropositive to pseudorabies (Aujeszky's disease) in northern Belgium

    No full text
    In Belgium, pseudorabies in swine has been the subject of a mandatory eradication programme since 1993, From December 1995 to February 1996, a survey was conducted in the five provinces of northern Belgium to estimate the provincial pseudorabies virus (PRV) herd seroprevalence. Seven hundred and twenty randomly selected herds were included in this survey. To detect recently infected animals, only young sows were sampled. The results show that 44% of these herds had an important number of PRV-seropositive young sows. The highest herd seroprevalence was observed in West Flanders (68%), followed by Antwerp (60%), East Flanders (43%), Limburg (18%), and Flemish Brabant (8%), Assuming a diagnostic test sensitivity and specificity of 95% and 99%, respectively, and a true PRV within-herd prevalence of 43%, the overall true PRV herd prevalence was estimated to be 35%. A logistic multiple-regression revealed that the presence of finishing pigs was associated with a two-fold increase in odds of a herd being seropositive (odds ratio (OR)=2.07, 95% confidence interval (CI)=1.31-3.26); a breeding herd size greater than or equal to 70 sows was associated with a four-fold increase in odds of a herd being seropositive (OR=4.09, 95% CI=2.18-7.67); a pig density in the municipality of greater than or equal to 455 pigs/km(2) was associated with a 10-fold increase in odds of a herd being seropositive (OR=9.68, 95% CI=5.17-18.12). No association was detected between the PRV herd seroprevalence and purchase policy of breeding pigs (purchased gilts , or use of homebred gilts only). (C) 1999 Elsevier Science B.V. All rights reserved
    corecore