1,148 research outputs found

    Unifying Brillouin scattering and cavity optomechanics

    Full text link
    So far, Brillouin scattering and cavity optomechanics were mostly disconnected branches of research -- although both deal with photon-phonon coupling. This begs for the development of a broader theory that contains both fields. Here, we derive the dynamics of optomechanical cavities from that of Brillouin-active waveguides. This explicit transition elucidates the link between phenomena such as Brillouin amplification and electromagnetically induced transparency. It proves that effects familiar from cavity optomechanics all have traveling-wave partners, but not vice versa. We reveal a close connection between two parameters of central importance in these fields: the Brillouin gain coefficient and the zero-point optomechanical coupling rate. This enables comparisons between systems as diverse as ultracold atom clouds, plasmonic Raman cavities and nanoscale silicon waveguides. In addition, back-of-the-envelope calculations show that unobserved effects, such as photon-assisted amplification of traveling phonons, are now accessible in existing systems. Finally, we formulate both circuit- and cavity-oriented optomechanics in terms of vacuum coupling rates, cooperativities and gain coefficients, thus reflecting the similarities in the underlying physics.Comment: published manuscript, minor change

    An ultra-high frequency optomechanical oscillator

    Get PDF

    Design of weak 1-D bragg grating filters in SOI waveguides using volume holography techniques

    Get PDF
    To answer the growing need for more versatile integrated spectral filters, we show that weak one-dimensional gratings can be designed towards any desired target spectrum. We follow a very straightforward design procedure to demonstrate the performance of these devices. Measurements and simulations show a very good correspondence with the target spectra. By analyzing the results, we also found that the design procedure can be refined by using simulated reflections, instead of relying on the calculated Fresnel reflections

    Focused-ion-beam fabricated vertical fiber couplers on silicon-on-insulator waveguides

    Get PDF
    We fabricated grating couplers in silicon-on-insulator waveguides with focused-ion-beam. First devices were very lossy, but by using selective etchant and a hard mask we obtained efficiencies comparable to traditional fabrication techniques
    corecore