19 research outputs found

    Skin color influences transcutaneous bilirubin measurements:a systematic in vitro evaluation

    Get PDF
    Objective: Concerns have been raised about the effect of skin color on the accuracy of transcutaneous bilirubin (TcB) measurements, a widely used method for hyperbilirubinemia diagnosis in newborns. Literature is inconclusive, with both reported under- and overestimations of the TcB with increasing skin pigmentation. Therefore, the influence of skin color on TcB measurements was systematically evaluated in a controlled, in vitro setting. Methods: A bilirubin meter (JM-105) was evaluated on layered phantoms that mimic neonatal skin with varying dermal bilirubin concentrations (0–250 µmol/L) and varying epidermal melanosome volume fractions (0–40%; light-dark skin color). Results: TcB measurements were influenced by skin pigmentation. Larger mimicked melanosome volume fractions and higher bilirubin levels led to larger underestimations of the measured TcB, compared to an unpigmented epidermis. In the in vitro setting of this study, these underestimations amounted to 26–132 µmol/L at a TcB level of 250 µmol/L. Conclusion: This in vitro study provides insight into the effect of skin color on TcB measurements: the TcB is underestimated as skin pigmentation increases and this effect becomes more pronounced at higher bilirubin levels. Our results highlight the need for improved TcB meter design and cautious interpretation of TcB readings on newborns with dark skin. Impact: Key message: Skin color influences transcutaneous bilirubin measurements: the darker the skin, the larger the underestimation. What this study adds to existing literature: Existing literature is inconclusive regarding the influence of skin color on transcutaneous bilirubin measurements. This study systematically evaluates and clarifies the influence of skin color on transcutaneous bilirubin measurements in a controlled, in vitro setting. Impact: This study aids to better interpret the measured TcB level in patients with varying skin colors, and is particularly important when using TcB meters on patients with dark skin colors.</p

    Population pharmacokinetics of vancomycin in term neonates with perinatal asphyxia treated with therapeutic hypothermia

    Get PDF
    Aims: Little is known about the population pharmacokinetics (PPK) of vancomycin in neonates with perinatal asphyxia treated with therapeutic hypothermia (TH). We aimed to describe the PPK of vancomycin and propose an initial dosing regimen for the first 48 h of treatment with pharmacokinetic/pharmacodynamic target attainment. Methods: Neonates with perinatal asphyxia treated with TH were included from birth until Day 6 in a multicentre prospective cohort study. A vancomycin PPK model was constructed using nonlinear mixed-effects modelling. The model was used to evaluate published dosing guidelines with regard to pharmacokinetic/pharmacodynamic target attainment. The area under the curve/minimal inhibitory concentration ratio of 400–600 mg*h/L was used as target range. Results: Sixteen patients received vancomycin (median gestational age: 41 [range: 38–42] weeks, postnatal age: 4.4 [2.5–5.5] days, birth weight: 3.5 [2.3–4.7] kg), and 112 vancomycin plasma concentrations were available. Most samples (79%) were collected during the rewarming and normothermic phase, as vancomycin was rarely initiated during the hypothermic phase due to its nonempirical use. An allometrically scaled 1-compartment model showed the best fit. Vancomycin clearance was 0.17 L/h, lower than literature values for term neonates of 3.5 kg without perinatal asphyxia (range: 0.20–0.32 L/h). Volume of distribution was similar. Published dosing regimens led to overexposure within 24 h of treatment. A loading dose of 10 mg/kg followed by 24 mg/kg/day in 4 doses resulted in target attainment. Conclusion: Results of this study suggest that vancomycin clearance is reduced in term neonates with perinatal asphyxia treated with TH. Lower dosing regimens should be considered followed by model-informed precision dosing.</p

    Population pharmacokinetics of vancomycin in term neonates with perinatal asphyxia treated with therapeutic hypothermia

    Get PDF
    Aims: Little is known about the population pharmacokinetics (PPK) of vancomycin in neonates with perinatal asphyxia treated with therapeutic hypothermia (TH). We aimed to describe the PPK of vancomycin and propose an initial dosing regimen for the first 48 h of treatment with pharmacokinetic/pharmacodynamic target attainment. Methods: Neonates with perinatal asphyxia treated with TH were included from birth until Day 6 in a multicentre prospective cohort study. A vancomycin PPK model was constructed using nonlinear mixed-effects modelling. The model was used to evaluate published dosing guidelines with regard to pharmacokinetic/pharmacodynamic target attainment. The area under the curve/minimal inhibitory concentration ratio of 400–600 mg*h/L was used as target range. Results: Sixteen patients received vancomycin (median gestational age: 41 [range: 38–42] weeks, postnatal age: 4.4 [2.5–5.5] days, birth weight: 3.5 [2.3–4.7] kg), and 112 vancomycin plasma concentrations were available. Most samples (79%) were collected during the rewarming and normothermic phase, as vancomycin was rarely initiated during the hypothermic phase due to its nonempirical use. An allometrically scaled 1-compartment model showed the best fit. Vancomycin clearance was 0.17 L/h, lower than literature values for term neonates of 3.5 kg without perinatal asphyxia (range: 0.20–0.32 L/h). Volume of distribution was similar. Published dosing regimens led to overexposure within 24 h of treatment. A loading dose of 10 mg/kg followed by 24 mg/kg/day in 4 doses resulted in target attainment. Conclusion: Results of this study suggest that vancomycin clearance is reduced in term neonates with perinatal asphyxia treated with TH. Lower dosing regimens should be considered followed by model-informed precision dosing.</p

    Population Pharmacokinetics and Dosing Optimization of Ceftazidime in Term Asphyxiated Neonates during Controlled Therapeutic Hypothermia

    Get PDF
    Ceftazidime is an antibiotic commonly used to treat bacterial infections in term neonates undergoing controlled therapeutic hypothermia (TH) for hypoxic-ischemic encephalopathy after perinatal asphyxia. We aimed to describe the population pharmacokinetics (PK) of ceftazidime in asphyxiated neonates during hypothermia, rewarming, and normothermia and propose a population-based rational dosing regimen with optimal PK/pharmacodynamic (PD) target attainment. Data were collected in the PharmaCool prospective observational multicenter study. A population PK model was constructed, and the probability of target attainment (PTA) was assessed during all phases of controlled TH using targets of 100% of the time that the concentration in the blood exceeds the MIC (T.MIC) (for efficacy purposes and 100% T.4×MIC and 100% T.5×MIC to prevent resistance). A total of 35 patients with 338 ceftazidime concentrations were included. An allometrically scaled one-compartment model with postnatal age and body temperature as covariates on clearance was constructed. For a typical patient receiving the current dose of 100 mg/kg of body weight/day in 2 doses and assuming a worst-case MIC of 8 mg/L for Pseudomonas aeruginosa, the PTA was 99.7% for 100% T.MIC during hypothermia (33.7°C; postnatal age [PNA] of 2 days). The PTA decreased to 87.7% for 100% T.MIC during normothermia (36.7°C; PNA of 5 days). Therefore, a dosing regimen of 100 mg/kg/day in 2 doses during hypothermia and rewarming and 150 mg/kg/day in 3 doses during the following normothermic phase is advised. Higher-dosing regimens (150 mg/kg/day in 3 doses during hypothermia and 200 mg/kg/day in 4 doses during normothermia) could be considered when achievements of 100% T.4×MIC and 100% T.5×MIC are desired.</p

    Predictive Performance of a Gentamicin Pharmacokinetic Model in Term Neonates with Perinatal Asphyxia Undergoing Controlled Therapeutic Hypothermia

    Get PDF
    Background:Model validation procedures are crucial when population pharmacokinetic (PK) models are used to develop dosing algorithms and to perform model-informed precision dosing. We have previously published a population PK model describing the PK of gentamicin in term neonates with perinatal asphyxia during controlled therapeutic hypothermia (TH), which showed altered gentamicin clearance during the hypothermic phase dependent on gestational age and weight. In this study, the predictive performance and generalizability of this model were assessed using an independent data set of neonates with perinatal asphyxia undergoing controlled TH.Methods:The external data set contained a subset of neonates included in the prospective observational multicenter PharmaCool Study. Predictive performance was assessed by visually inspecting observed-versus-predicted concentration plots and calculating bias and precision. In addition, simulation-based diagnostics, model refitting, and bootstrap analyses were performed.Results:The external data set included 323 gentamicin concentrations of 39 neonates. Both the model-building and external data set included neonates from multiple centers. The original gentamicin PK model predicted the observed gentamicin concentrations with adequate accuracy and precision during all phases of controlled TH. Model appropriateness was confirmed with prediction-corrected visual predictive checks and normalized prediction distribution error analyses. Model refitting to the merged data set (n = 86 neonates with 935 samples) showed accurate estimation of PK parameters.Conclusions:The results of this external validation study justify the generalizability of the gentamicin dosing recommendations made in the original study for neonates with perinatal asphyxia undergoing controlled TH (5 mg/kg every 36 or 24 h with gestational age 36-41 and 42 wk, respectively) and its applicability in model-informed precision dosing.</p

    Predictive Performance of a Gentamicin Pharmacokinetic Model in Term Neonates with Perinatal Asphyxia Undergoing Controlled Therapeutic Hypothermia

    Get PDF
    Background:Model validation procedures are crucial when population pharmacokinetic (PK) models are used to develop dosing algorithms and to perform model-informed precision dosing. We have previously published a population PK model describing the PK of gentamicin in term neonates with perinatal asphyxia during controlled therapeutic hypothermia (TH), which showed altered gentamicin clearance during the hypothermic phase dependent on gestational age and weight. In this study, the predictive performance and generalizability of this model were assessed using an independent data set of neonates with perinatal asphyxia undergoing controlled TH.Methods:The external data set contained a subset of neonates included in the prospective observational multicenter PharmaCool Study. Predictive performance was assessed by visually inspecting observed-versus-predicted concentration plots and calculating bias and precision. In addition, simulation-based diagnostics, model refitting, and bootstrap analyses were performed.Results:The external data set included 323 gentamicin concentrations of 39 neonates. Both the model-building and external data set included neonates from multiple centers. The original gentamicin PK model predicted the observed gentamicin concentrations with adequate accuracy and precision during all phases of controlled TH. Model appropriateness was confirmed with prediction-corrected visual predictive checks and normalized prediction distribution error analyses. Model refitting to the merged data set (n = 86 neonates with 935 samples) showed accurate estimation of PK parameters.Conclusions:The results of this external validation study justify the generalizability of the gentamicin dosing recommendations made in the original study for neonates with perinatal asphyxia undergoing controlled TH (5 mg/kg every 36 or 24 h with gestational age 36-41 and 42 wk, respectively) and its applicability in model-informed precision dosing.</p

    Inter-device reproducibility of transcutaneous bilirubin meters

    Get PDF
    Background: Transcutaneous bilirubinometry is a widely used screening method for neonatal hyperbilirubinemia. Deviation of the transcutaneous bilirubin concentration (TcB) from the total serum bilirubin concentration (TSB) is often ascribed to biological variation between patients, but variations between TcB meters may also have a role. This study aims to provide a systematic evaluation of the inter-device reproducibility of TcB meters. Materials and Methods: Thirteen commercially available TcB meters (JM-105 and JM-103) were evaluated in vitro on phantoms that optically mimic neonatal skin. The mimicked TcB was varied within the clinical range (0.5–181.3 μmol/L). Results: Absolute differences between TcB meter outcomes increased with the measured TcB, from a difference of 5.0 μmol/L (TcB = 0.5 μmol/L phantom) up to 65.0 μmol/L (TcB = 181.3 μmol/L phantom). Conclusion: The inter-device reproducibility of the examined TcB meters is substantial and exceeds the specified accuracy of the device (±25.5 μmol/L), as well as the clinically used TcB safety margins (>50 µmol/L below phototherapy threshold). Healthcare providers should be well aware of this additional uncertainty in the TcB determination, especially when multiple TcB meters are employed in the same clinic. We strongly advise using a single TcB meter per patient to evaluate the TcB over time. Impact: Key message: The inter-device reproducibility of TcB meters is substantial and exceeds the clinically used TcB safety margins.What this study adds to existing literature: The inter-device reproducibility of transcutaneous bilirubin (TcB) meters has not been reported in the existing literature. This in vitro study systematically evaluates this inter-device reproducibility.Impact: This study aids in a better interpretation of the measured TcB value from a patient and is of particular importance during patient monitoring when using multiple TcB meters within the same clinical department. We strongly advise using a single TcB meter per patient to evaluate the TcB over time.[Figure not available: see fulltext.][Figure not available: see fulltext.][Figure not available: see fulltext.
    corecore