24 research outputs found

    Stratified Management for Bacterial Infections in Late Preterm and Term Neonates:Current Strategies and Future Opportunities Toward Precision Medicine

    Get PDF
    Bacterial infections remain a major cause of morbidity and mortality in the neonatal period. Therefore, many neonates, including late preterm and term neonates, are exposed to antibiotics in the first weeks of life. Data on the importance of inter-individual differences and disease signatures are accumulating. Differences that may potentially influence treatment requirement and success rate. However, currently, many neonates are treated following a “one size fits all” approach, based on general protocols and standard antibiotic treatment regimens. Precision medicine has emerged in the last years and is perceived as a new, holistic, way of stratifying patients based on large-scale data including patient characteristics and disease specific features. Specific to sepsis, differences in disease susceptibility, disease severity, immune response and pharmacokinetics and -dynamics can be used for the development of treatment algorithms helping clinicians decide when and how to treat a specific patient or a specific subpopulation. In this review, we highlight the current and future developments that could allow transition to a more precise manner of antibiotic treatment in late preterm and term neonates, and propose a research agenda toward precision medicine for neonatal bacterial infections.</p

    Incidence of Antibiotic Exposure for Suspected and Proven Neonatal Early-Onset Sepsis between 2019 and 2021:A Retrospective, Multicentre Study

    Get PDF
    Management of suspected early-onset sepsis (EOS) is undergoing continuous evolution aiming to limit antibiotic overtreatment, yet current data on the level of overtreatment are only available for a select number of countries. This study aimed to determine antibiotic initiation and continuation rates for suspected EOS, along with the incidence of culture-proven EOS in The Netherlands. In this retrospective study from 2019 to 2021, data were collected from 15 Dutch hospitals, comprising 13 regional hospitals equipped with Level I-II facilities and 2 academic hospitals equipped with Level IV facilities. Data included birth rates, number of neonates started on antibiotics for suspected EOS, number of neonates that continued treatment beyond 48 h and number of neonates with culture-proven EOS. Additionally, blood culture results were documented. Data were analysed both collectively and separately for regional and academic hospitals. A total of 103,492 live-born neonates were included. In 4755 neonates (4.6%, 95% CI 4.5–4.7), antibiotic therapy was started for suspected EOS, and in 2399 neonates (2.3%, 95% CI 2.2–2.4), antibiotic treatment was continued beyond 48 h. Incidence of culture-proven EOS was 1.1 cases per 1000 live births (0.11%, 95% CI 0.09–0.14). Overall, for each culture-proven EOS case, 40.6 neonates were started on antibiotics and in 21.7 neonates therapy was continued. Large variations in treatment rates were observed across all hospitals, with the number of neonates initiated and continued on antibiotics per culture-proven EOS case varying from 4 to 90 and from 4 to 56, respectively. The high number of antibiotic prescriptions compared to the EOS incidence and wide variety in clinical practice among hospitals in The Netherlands underscore both the need and potential for a novel approach to the management of neonates with suspected EOS.</p

    Growth and CD4 patterns of adolescents living with perinatally acquired HIV worldwide, a CIPHER cohort collaboration analysis.

    Get PDF
    INTRODUCTION Adolescents living with HIV are subject to multiple co-morbidities, including growth retardation and immunodeficiency. We describe growth and CD4 evolution during adolescence using data from the Collaborative Initiative for Paediatric HIV Education and Research (CIPHER) global project. METHODS Data were collected between 1994 and 2015 from 11 CIPHER networks worldwide. Adolescents with perinatally acquired HIV infection (APH) who initiated antiretroviral therapy (ART) before age 10 years, with at least one height or CD4 count measurement while aged 10-17 years, were included. Growth was measured using height-for-age Z-scores (HAZ, stunting if <-2 SD, WHO growth charts). Linear mixed-effects models were used to study the evolution of each outcome between ages 10 and 17. For growth, sex-specific models with fractional polynomials were used to model non-linear relationships for age at ART initiation, HAZ at age 10 and time, defined as current age from 10 to 17 years of age. RESULTS A total of 20,939 and 19,557 APH were included for the growth and CD4 analyses, respectively. Half were females, two-thirds lived in East and Southern Africa, and median age at ART initiation ranged from 7 years in sub-Saharan African regions. At age 10, stunting ranged from 6% in North America and Europe to 39% in the Asia-Pacific; 19% overall had CD4 counts <500 cells/mm3 . Across adolescence, higher HAZ was observed in females and among those in high-income countries. APH with stunting at age 10 and those with late ART initiation (after age 5) had the largest HAZ gains during adolescence, but these gains were insufficient to catch-up with non-stunted, early ART-treated adolescents. From age 10 to 16 years, mean CD4 counts declined from 768 to 607 cells/mm3 . This decline was observed across all regions, in males and females. CONCLUSIONS Growth patterns during adolescence differed substantially by sex and region, while CD4 patterns were similar, with an observed CD4 decline that needs further investigation. Early diagnosis and timely initiation of treatment in early childhood to prevent growth retardation and immunodeficiency are critical to improving APH growth and CD4 outcomes by the time they reach adulthood

    Identification of amino acid residues critical for catalysis of holliday junction resolution by Mycoplasma genitalium RecU

    No full text
    The RecU protein from Mycoplasma genitalium, RecU Mge, is a 19.4-kDa Holliday junction (HJ) resolvase that binds in a nonspecific fashion to HJ substrates and, in the presence of Mn 2+, cleaves these substrates at a specific sequence (5'-G/TC2C/TTA/GG-3'). To identify amino acid residues that are crucial for HJ binding and/or cleavage, we generated a series of 16 deletion mutants (9 N- and 7 C-terminal deletion mutants) and 31 point mutants of RecU Mge. The point mutations were introduced at amino acid positions that are highly conserved among bacterial RecU-like sequences. All mutants were purified and tested for the ability to bind to, and cleave, HJ substrates. We found the five N-terminal and three C-terminal amino acid residues of RecU Mge to be dispensable for its catalytic activities. Among the 31 point mutants, 7 mutants were found to be inactive in both HJ binding and cleavage. Interestingly, in 12 other mutants, these two activities were uncoupled; while these proteins displayed HJ-binding characteristics similar to those of wild-type RecU Mge, they were unable to cleave HJ substrates. Thus, 12 amino acid residues were identified (E11, K31, D57, Y58, Y66, D68, E70, K72, T74, K76, Q88, and L92) that may play either a direct or indirect role in the catalysis of HJ resolution.</p

    Challenges in the treatment of pediatric Mycoplasma pneumoniae pneumonia

    No full text
    Mycoplasma pneumoniae (MP) is an important cause of community-acquired pneumonia in children and young adolescents. Despite macrolide antibiotics effectiveness as a first-line therapy, persistence of fever and/or clinical deterioration sometimes may complicate treatment and may even lead to severe systemic disease. To date, there is no consensus on alternative treatment options, optimal dosage, and duration for treating severe, progressive, and systemic MP pneumonia after macrolide treatment failure. Macrolide-resistant MP pneumonia and refractory MP pneumonia are the two major complex conditions that are clinically encountered. Currently, the vast majority of MP isolates are resistant to macrolides in East Asia, especially China, whereas in Europe and North America, whereas in Europe and North America prevalence is substantially lower than in Asia, varying across countries. The severity of pneumonia and extrapulmonary presentations may reflect the intensity of the host’s immune reaction or the dissemination of bacterial infection. Children infected with macrolide-resistant MP strains who receive macrolide treatment experience persistent fever with extended antibiotic therapy and minimal decrease in MP-DNA load. Alternative second-line agents such as tetracyclines (doxycycline or minocycline) and fluoroquinolones (ciprofloxacin or levofloxacin) may lead to clinical improvement after macrolide treatment failure in children. Refractory MP pneumonia reflects a deterioration of clinical and radiological findings due to excessive immune response against the infection. Immunomodulators such as corticosteroids and intravenous immunoglobulin (IVIG) have shown promising results in treatment of refractory MP pneumonia, particularly when combined with appropriate antimicrobials. Corticosteroid-resistant hyperinflammatory MP pneumonia represents a persistent or recrudescent fever despite corticosteroid therapy with intravenous methylprednisolone at standard dosage. Conclusion: This report summarizes the clinical significance of macrolide-resistant and refractory MP pneumonia and discusses the efficacy and safety of alternative drugs, with a stepwise approach to the management of MP pneumonia recommended from the viewpoint of clinical practice. (Table presented.)</p

    Galacto-Oligosaccharides as an Anti-Infective and Anti-Microbial Agent for Macrolide-Resistant and -Sensitive Mycoplasma pneumoniae

    Get PDF
    The worldwide increase in the incidence of antibiotic resistance of the atypical bacterium Mycoplasma pneumoniae (MP) challenges the treatment of MP infections, especially in children. Therefore, alternative strategies for the treatment of MP infections are warranted. Galacto- and fructo-oligosaccharides (GOS and FOS) are a specific group of complex carbohydrates that were recently shown to possess direct anti-pathogenic properties. In this study, we assessed whether GOS and FOS exert anti-microbial and anti-infective effects against MP and, especially, macrolide-resistant MP (MRMP) in vitro. The MIC values of GOS for MP and MRMP were 4%. In contrast, the MIC values of FOS for both MP and MRMP were 16%. A time-kill kinetic assay showed that FOS possess bacteriostatic properties, while for GOS, a bactericidal effect against MP and MRMP was observed after 24 h at a concentration of 4x MIC. In co-cultures with human alveolar A549 epithelial cells, GOS killed adherent MP and MRMP and also concentration-dependently inhibited their adherence to A549 cells. Further, GOS suppressed (MR)MP-induced IL-6 and IL-8 in A549 cells. None of the aforementioned parameters were affected when FOS were added to these co-cultures. In conclusion, the anti-infective and anti-microbial properties of GOS could provide an alternative treatment against MRMP and MP infections
    corecore