146 research outputs found

    Functional Gait Can Be Affected by Noise: Effects of Age and Cognitive Function: A Pilot Study

    Get PDF
    Background: The ageing process may degrade an individual's balance control, hearing capacity, and cognitive function. Older adults perform worse on simultaneously executed balance and secondary tasks (i.e., dual-task performance) than younger adults and may be more vulnerable to auditory distraction. / Aim: The purpose of this study was to determine the effect of passive listening on functional gait in healthy older vs. younger adults, and to investigate the effect of age, functional gait, hearing ability and cognitive functioning on dual-task performance. / Methods: Twenty young and 20 older healthy adults were recruited. Functional gait (Functional Gait Assessment in silent and noisy condition), hearing function (audiogram; Speech in Babble test), and cognitive ability (Cambridge Neuropsychological Test Automated Battery) were measured. / Results: Overall, a significant difference between functional gait performance in silent vs. noisy conditions was found (p = 0.022), with no significant difference in dual-task cost between the two groups (p = 0.11). Correlations were found between increasing age, worse functional gait performance, poorer hearing capacity and lower performance on cognitive function tasks. Interestingly, worse performance on attention tasks appeared to be associated with a worse functional gait performance in the noisy condition. / Conclusion: Passive listening to multi-talker babble noise can affect functional gait in both young and older adults. This effect could result from the cognitive load of the babble noise, due to the engagement of attention networks by the unattended speech

    2BALANCE : a cognitive-motor dual-task protocol for individuals with vestibular dysfunction

    Get PDF
    INTRODUCTION: Aside from primary vestibular symptoms such as vertigo and dizziness, persons with vestibular dysfunction frequently express cognitive and motor problems. These symptoms have mainly been assessed in single-task setting, which might not represent activities of daily living accurately. Therefore, a dual-task protocol, consisting of the simultaneous performance of cognitive and motor tasks, was developed. This protocol assesses cognitive and motor performance in general, as well as cognitive-motor interference in specific. METHODS AND ANALYSIS: The motor component of the 2BALANCE protocol consists of a static and dynamic postural task. These motor tasks are combined with different cognitive tasks assessing visuospatial cognition, processing speed, working memory and response inhibition. First, test-retest reliability will be assessed with an interval of 2 weeks in a group of young adults. Second, the 2BALANCE protocol will be validated in persons with bilateral vestibulopathy. Finally, the protocol will be implemented in persons with unilateral vestibular loss. DISCUSSION AND CONCLUSIONS: The 2BALANCE project aims to elucidate the impact of vestibular dysfunction on cognitive and motor performance in dual-task setting. This protocol represents everyday situations better than single-task protocols, as dual-tasks such as reading street signs while walking are often encountered during daily activities. Ultimately, this project could enable individualised and holistic clinical care in these patients, taking into account single as well as dual-task performance. ETHICS AND DISSEMINATION: The current study was approved by the ethics committee of Ghent University Hospital on 5 July 2019 with registration number B670201940465. All research findings will be disseminated in peer-reviewed journals and presented at vestibular as well as multidisciplinary international conferences and meetings. TRIALS REGISTRATION NUMBER: NCT04126798, pre-results phase

    Prioritizing otological surgery during the COVID-19 Pandemic

    Get PDF
    The initial cases of pulmonary infection with the novel corona virus SARS-CoV-2, causing COVID-19, occurred in Wuhan, Hubei Province, China in December 2019 and January 2020 (1). The spread through human-to-human transmission has led to a pandemic with disastrous consequences all over the world. The exponential rate of transmission and no existing vaccine has been a great challenge for all health care systems. A strategy to flatten the curve of transmission was put forward to adjust to the capacities of hospitals and particularly the intensive care units. Governments implemented isolation and social distancing upon societies either with laws or with strong recommendations

    Mutation Testing as a Safety Net for Test Code Refactoring

    Full text link
    Refactoring is an activity that improves the internal structure of the code without altering its external behavior. When performed on the production code, the tests can be used to verify that the external behavior of the production code is preserved. However, when the refactoring is performed on test code, there is no safety net that assures that the external behavior of the test code is preserved. In this paper, we propose to adopt mutation testing as a means to verify if the behavior of the test code is preserved after refactoring. Moreover, we also show how this approach can be used to identify the part of the test code which is improperly refactored

    Considering Polymorphism in Change-Based Test Suite Reduction

    Full text link
    With the increasing popularity of continuous integration, algorithms for selecting the minimal test-suite to cover a given set of changes are in order. This paper reports on how polymorphism can handle false negatives in a previous algorithm which uses method-level changes in the base-code to deduce which tests need to be rerun. We compare the approach with and without polymorphism on two distinct cases ---PMD and CruiseControl--- and discovered an interesting trade-off: incorporating polymorphism results in more relevant tests to be included in the test suite (hence improves accuracy), however comes at the cost of a larger test suite (hence increases the time to run the minimal test-suite).Comment: The final publication is available at link.springer.co

    The Functional Head Impulse Test to Assess Oscillopsia in Bilateral Vestibulopathy

    Get PDF
    Introduction: Bilateral vestibulopathy (BV) is a chronic condition in which vestibular function is severely impaired or absent on both ears. Oscillopsia is one of the main symptoms of BV. Oscillopsia can be quantified objectively by functional vestibular tests, and subjectively by questionnaires. Recently, a new technique for testing functionally effective gaze stabilization was developed: the functional Head Impulse Test (fHIT). This study compared the fHIT with the Dynamic Visual Acuity assessed on a treadmill (DVAtreadmill) and Oscillopsia Severity Questionnaire (OSQ) in the context of objectifying the experience of oscillopsia in patients with BV.Methods: Inclusion criteria comprised: (1) summated slow phase velocity of nystagmus of <20°/s during bithermal caloric tests, (2) torsion swing tests gain of <30% and/or phase <168°, and (3) complaints of oscillopsia and/or imbalance. During the fHIT (Beon Solutions srl, Italy) patients were seated in front of a computer screen. During a passive horizontal head impulse a Landolt C optotype was shortly displayed. Patients reported the seen optotype by pressing the corresponding button on a keyboard. The percentage correct answers was registered for leftwards and rightwards head impulses separately. During DVAtreadmill patients were positioned on a treadmill in front of a computer screen that showed Sloan optotypes. Patients were tested in static condition and in dynamic conditions (while walking on the treadmill at 2, 4, and 6 km/h). The decline in LogMAR between static and dynamic conditions was registered for each speed. Every patient completed the Oscillopsia Severity Questionnaire (OSQ).Results: In total 23 patients were included. This study showed a moderate correlation between OSQ outcomes and the fHIT [rightwards head rotations (rs = −0.559; p = 0.006) leftwards head rotations (rs = −0.396; p = 0.061)]. No correlation was found between OSQ outcomes and DVAtreadmill, or between DVAtreadmill and fHIT. All patients completed the fHIT, 52% of the patients completed the DVAtreadmill on all speeds.Conclusion: The fHIT seems to be a feasible test to quantify oscillopsia in BV since, unlike DVAtreadmill, it correlates with the experienced oscillopsia measured by the OSQ, and more BV patients are able to complete the fHIT than DVAtreadmill

    Diagnostic accuracy and usability of the EMBalance decision support system for vestibular disorders in primary care: proof of concept randomised controlled study results

    Get PDF
    BACKGROUND: Dizziness and imbalance are common symptoms that are often inadequately diagnosed or managed, due to a lack of dedicated specialists. Decision Support Systems (DSS) may support first-line physicians to diagnose and manage these patients based on personalised data. AIM: To examine the diagnostic accuracy and application of the EMBalance DSS for diagnosis and management of common vestibular disorders in primary care. METHODS: Patients with persistent dizziness were recruited from primary care in Germany, Greece, Belgium and the UK and randomised to primary care clinicians assessing the patients with (+ DSS) versus assessment without (- DSS) the EMBalance DSS. Subsequently, specialists in neuro-otology/audiovestibular medicine performed clinical evaluation of each patient in a blinded way to provide the "gold standard" against which the + DSS, - DSS and the DSS as a standalone tool (i.e. without the final decision made by the clinician) were validated. RESULTS: One hundred ninety-four participants (age range 25-85, mean = 57.7, SD = 16.7 years) were assigned to the + DSS (N = 100) and to the - DSS group (N = 94). The diagnosis suggested by the + DSS primary care physician agreed with the expert diagnosis in 54%, compared to 41.5% of cases in the - DSS group (odds ratio 1.35). Similar positive trends were observed for management and further referral in the + DSS vs. the - DSS group. The standalone DSS had better diagnostic and management accuracy than the + DSS group. CONCLUSION: There were trends for improved vestibular diagnosis and management when using the EMBalance DSS. The tool requires further development to improve its diagnostic accuracy, but holds promise for timely and effective diagnosis and management of dizzy patients in primary care. TRIAL REGISTRATION NUMBER: NCT02704819 (clinicaltrials.gov)

    Multi-frequency VEMPs improve detection of present otolith responses in bilateral vestibulopathy

    Get PDF
    ObjectiveTo investigate whether multi-frequency Vestibular Evoked Myogenic Potential (VEMP) testing at 500, 750, 1,000, and 2,000 Hz, would improve the detection of present dynamic otolith responses in patients with bilateral vestibulopathy (BV).MethodsProspective study in a tertiary referral center. BV patients underwent multi-frequency VEMP testing. Cervical VEMPs and ocular VEMPs were recorded with the Neuro-Audio system (v2010, Neurosoft, Ivanovo, Russia). The stimuli included air-conducted tone bursts of 500, 750, 1,000, and 2,000 Hz, at a stimulation rate of 13 Hz. Outcome measures included the percentage of present and absent VEMP responses, and VEMP thresholds. Outcomes were compared between frequencies and type of VEMPs (cVEMPs, oVEMPs). VEMP outcomes obtained with the 500 Hz stimulus, were also compared to normative values obtained in healthy subjects.ResultsForty-nine BV patients completed VEMP testing: 47 patients completed cVEMP testing and 48 patients completed oVEMP testing. Six to 15 % more present VEMP responses were obtained with multifrequency testing, compared to only testing at 500 Hz. The 2,000 Hz stimulus elicited significantly fewer present cVEMP responses (right and left ears) and oVEMP responses (right ears) compared to the other frequencies (p ≤ 0.044). Using multi-frequency testing, 78% of BV patients demonstrated at least one present VEMP response in at least one ear. In 46% a present VEMP response was found bilaterally. BV patients demonstrated a significantly higher percentage of absent VEMP responses and significantly higher VEMP thresholds than healthy subjects, when corrected for age (p ≤ 0.002). Based on these results, a pragmatic VEMP testing paradigm is proposed, taking into account multi-frequency VEMP testing.ConclusionMulti-frequency VEMP testing improves the detection rate of present otolith responses in BV patients. Therefore, multi-frequency VEMPs should be considered when evaluation of (residual) otolith function is indicated

    Bilateral vestibulopathy and age:experimental considerations for testing dynamic visual acuity on a treadmill

    Get PDF
    Introduction: Bilateral vestibulopathy (BVP) can affect visual acuity in dynamic conditions, like walking. This can be assessed by testing Dynamic Visual Acuity (DVA) on a treadmill at different walking speeds. Apart from BVP, age itself might influence DVA and the ability to complete the test. The objective of this study was to investigate whether DVA tested while walking, and the drop-out rate (the inability to complete all walking speeds of the test) are significantly influenced by age in BVP-patients and healthy subjects. Methods: Forty-four BVP-patients (20 male, mean age 59 years) and 63 healthy subjects (27 male, mean age 46 years) performed the DVA test on a treadmill at 0 (static condition), 2, 4 and 6 km/h (dynamic conditions). The dynamic visual acuity loss was calculated as the difference between visual acuity in the static condition and visual acuity in each walking condition. The dependency of the drop-out rate and dynamic visual acuity loss on BVP and age was investigated at all walking speeds, as well as the dependency of dynamic visual acuity loss on speed. Results: Age and BVP significantly increased the drop-out rate (p ≤ 0.038). A significantly higher dynamic visual acuity loss was found at all speeds in BVP-patients compared to healthy subjects (p < 0.001). Age showed no effect on dynamic visual acuity loss in both groups. In BVP-patients, increasing walking speeds resulted in higher dynamic visual acuity loss (p ≤ 0.036). Conclusion DVA tested while walking on a treadmill, is one of the few “close to reality” functional outcome measures of vestibular function in the vertical plane. It is able to demonstrate significant loss of DVA in bilateral vestibulopathy patients. However, since bilateral vestibulopathy and age significantly increase the drop-out rate at faster walking speeds, it is recommended to use age-matched controls. Furthermore, it could be considered to use an individual “preferred” walking speed and to limit maximum walking speed in older subjects when testing DVA on a treadmill
    corecore