39 research outputs found
The relationship between lung function impairment and quantitative computed tomography in chronic obstructive pulmonary disease
Contains fulltext :
109919.pdf (Publisher’s version ) (Open Access)OBJECTIVES: To determine the relationship between lung function impairment and quantitative computed tomography (CT) measurements of air trapping and emphysema in a population of current and former heavy smokers with and without airflow limitation. METHODS: In 248 subjects (50 normal smokers; 50 mild obstruction; 50 moderate obstruction; 50 severe obstruction; 48 very severe obstruction) CT emphysema and CT air trapping were quantified on paired inspiratory and end-expiratory CT examinations using several available quantification methods. CT measurements were related to lung function (FEV(1), FEV(1)/FVC, RV/TLC, Kco) by univariate and multivariate linear regression analysis. RESULTS: Quantitative CT measurements of emphysema and air trapping were strongly correlated to airflow limitation (univariate r-squared up to 0.72, p < 0.001). In multivariate analysis, the combination of CT emphysema and CT air trapping explained 68-83% of the variability in airflow limitation in subjects covering the total range of airflow limitation (p < 0.001). CONCLUSIONS: The combination of quantitative CT air trapping and emphysema measurements is strongly associated with lung function impairment in current and former heavy smokers with a wide range of airflow limitation.01 januari 201
Radiomics-based differentiation of lung disease models generated by polluted air based on X-ray computed tomography data
BACKGROUND: Lung diseases (resulting from air pollution) require a widely accessible method for risk estimation and early diagnosis to ensure proper and responsive treatment. Radiomics-based fractal dimension analysis of X-ray computed tomography attenuation patterns in chest voxels of mice exposed to different air polluting agents was performed to model early stages of disease and establish differential diagnosis. METHODS: To model different types of air pollution, BALBc/ByJ mouse groups were exposed to cigarette smoke combined with ozone, sulphur dioxide gas and a control group was established. Two weeks after exposure, the frequency distributions of image voxel attenuation data were evaluated. Specific cut-off ranges were defined to group voxels by attenuation. Cut-off ranges were binarized and their spatial pattern was associated with calculated fractal dimension, then abstracted by the fractal dimension -- cut-off range mathematical function. Nonparametric Kruskal-Wallis (KW) and Mann-Whitney post hoc (MWph) tests were used. RESULTS: Each cut-off range versus fractal dimension function plot was found to contain two distinctive Gaussian curves. The ratios of the Gaussian curve parameters are considerably significant and are statistically distinguishable within the three exposure groups. CONCLUSIONS: A new radiomics evaluation method was established based on analysis of the fractal dimension of chest X-ray computed tomography data segments. The specific attenuation patterns calculated utilizing our method may diagnose and monitor certain lung diseases, such as chronic obstructive pulmonary disease (COPD), asthma, tuberculosis or lung carcinomas
A method for the automatic quantification of the completeness of pulmonary fissures: evaluation in a database of subjects with severe emphysema.
Contains fulltext :
110785.pdf (Publisher’s version ) (Open Access)OBJECTIVES: To propose and evaluate a technique for automatic quantification of fissural completeness from chest computed tomography (CT) in a database of subjects with severe emphysema. METHODS: Ninety-six CT studies of patients with severe emphysema were included. The lungs, fissures and lobes were automatically segmented. The completeness of the fissures was calculated as the percentage of the lobar border defined by a fissure. The completeness score of the automatic method was compared with a visual consensus read by three radiologists using boxplots, rank sum tests and ROC analysis. RESULTS: The consensus read found 49% (47/96), 15% (14/96) and 67% (64/96) of the right major, right minor and left major fissures to be complete. For all fissures visually assessed as being complete the automatic method resulted in significantly higher completeness scores (mean 92.78%) than for those assessed as being partial or absent (mean 77.16%; all p values <0.001). The areas under the curves for the automatic fissural completeness were 0.88, 0.91 and 0.83 for the right major, right minor and left major fissures respectively. CONCLUSIONS: An automatic method is able to quantify fissural completeness in a cohort of subjects with severe emphysema consistent with a visual consensus read of three radiologists. KEY POINTS: * Lobar fissures are important for assessing the extent and distribution of lung disease * Modern CT allows automatic lobar segmentation and assessment of the fissures * This segmentation can also assess the completeness of the fissures. * Such assessment is important for decisions about novel therapies (eg for emphysema).01 februari 201