41 research outputs found

    Neonatal Fc receptor promoter gene polymorphism does not predict pharmacokinetics of IVIg or the clinical course of GBS

    Get PDF
    Treatment of Guillain-Barré syndrome with a standard course of high-dose intravenous immunoglobulin (IVIg) results in a variable clinical recovery which is associated with changes in serum IgG levels after treatment. The neonatal Fc-receptor protects IgG from degradation, and a genetic polymorphism in its promoter region that influences the expression of Fc-receptor, may in part explain the variation in IgG levels and outcome. This polymorphism was determined by polymerase chain reaction in a cohort of 257 patients with Guillain-Barré syndrome treated with IVIg. We could not demonstrate a relation between this polymorphism, the pharmacokinetics of IVIg, or the clinical course and outcome

    IVIg-induced plasmablasts in patients with Guillain-Barré syndrome

    Get PDF
    Objective: The Guillain–Barré syndrome (GBS) is an acute, immune-mediated disease of peripheral nerves. Plasmablasts and plasma cells play a central role in GBS by producing neurotoxic antibodies. The standard treatment for GBS is high-dose intravenous immunoglobulins (IVIg), however the working mechanism is unknown and the response to treatment is highly variable. We aimed to determine whether IVIg changes the frequency of B-cell subsets in patients with GBS. Methods: Peripheral blood mononuclear cells were isolated from 67 patients with GBS before and/or 1, 2, 4, and 12 weeks after treatment with high-dose IVIg. B-cell subset frequencies were determined by flow cytometry and related to serum immunoglobulin levels. Immunoglobulin transcripts before and after IVIg treatment were examined by next-generation sequencing. Antiglycolipid antibodies were determined by ELISA. Results: Patients treated with IVIg demonstrated a strong increase in plasmablasts, which peaked 1 week after treatment. Flow cytometry identified a relative increase in IgG2 plasmablasts posttreatment. Within IGG sequences, dominant clones were identified which were also IGG2 and had different immunoglobulin sequences compared to pretreatment samples. High plasmablast frequencies after treatment correlated with an increase in serum IgG and IgM, suggesting endogenous production. Patients with a high number of plasmablasts started to improve earlier (P = 0.015) and were treated with a higher dose of IVIg. Interpretation: High-dose IVIg treatment alters the distribution of B-cell subsets in the peripheral blood of GBS patients, suggesting de novo (oligo-)clonal B-cell activation. Very high numbers of plasmablasts after IVIg therapy may be a potential biomarker for fast clinical recovery

    Sialylation of campylobacter jejuni lipo-oligosaccharides: impact on phagocytosis and cytokine production in mice

    Get PDF
    <p>Background: Guillain-Barré syndrome (GBS) is a post-infectious polyradiculoneuropathy, frequently associated with antecedent Campylobacter jejuni (C. jejuni) infection. The presence of sialic acid on C. jejuni lipo-oligosaccharide (LOS) is considered a risk factor for development of GBS as it crucially determines the structural homology between LOS and gangliosides, explaining the induction of cross-reactive neurotoxic antibodies. Sialylated C. jejuni are recognised by TLR4 and sialoadhesin; however, the functional implications of these interactions in vivo are unknown.</p> <p>Methodology/Principal Findings: In this study we investigated the effects of bacterial sialylation on phagocytosis and cytokine secretion by mouse myeloid cells in vitro and in vivo. Using fluorescently labelled GM1a/GD1a ganglioside-mimicking C. jejuni strains and corresponding (Cst-II-mutant) control strains lacking sialic acid, we show that sialylated C. jejuni was more efficiently phagocytosed in vitro by BM-MΦ, but not by BM-DC. In addition, LOS sialylation increased the production of IL-10, IL-6 and IFN-β by both BM-MΦ and BM-DC. Subsequent in vivo experiments revealed that sialylation augmented the deposition of fluorescent bacteria in splenic DC, but not macrophages. In addition, sialylation significantly amplified the production of type I interferons, which was independent of pDC.</p> <p>Conclusions/Significance: These results identify novel immune stimulatory effects of C. jejuni sialylation, which may be important in inducing cross-reactive humoral responses that cause GBS</p&gt

    Subclass IgG to motor gangliosides related to infection and clinical course in Guillain-Barre syndrome

    No full text
    In 176 patients with Guillain-Barre syndrome the subclass and cross-reactivity of serum IgG antibodies to motor gangliosides was related to preceding infections and clinical phenotypes. Two subgroups of patients were identified. Presence of only IgG I antibodies was related to diarrhea, positive Campylobacter serology, cross-reactive antibodies to C jejuni lipo-oligosaccharides and poor outcome. In contrast, having both IgG1 and IgG3 antibodies was related to upper respiratory tract infections, cross-reactive antibodies to Haemophilus influenzae lipo-oligosaccharides and better outcome. These findings support a model in which C. jejuni and H. influenzae infections induce two distinct patterns of cross-reactive antibodies with different clinical outcome. (C) 2007 Elsevier B.V. All rights reserved

    Neonatal Fc receptor promoter gene polymorphism does not predict pharmacokinetics of IVIg or the clinical course of GBS

    Get PDF
    Treatment of Guillain-Barre syndrome with a standard course of high-dose intravenous immunoglobulin ( IVIg) results in a variable clinical recovery which is associated with changes in serum IgG levels after treatment. The neonatal Fc-receptor protects IgG from degradation, and a genetic polymorphism in its promoter region that influences the expression of Fc-receptor, may in part explain the variation in IgG levels and outcome. This polymorphism was determined by polymerase chain reaction in a cohort of 257 patients with Guillain-Barre syndrome treated with IVIg. We could not demonstrate a relation between this polymorphism, the pharmacokinetics of IVIg, or the clinical course and outcome
    corecore