551 research outputs found

    On the Role of Penning Ionization in Photoassociation Spectroscopy

    Full text link
    We study the role of Penning ionization on the photoassociation spectra of He(^3S)-He(^3S). The experimental setup is discussed and experimental results for different intensities of the probe laser are shown. For modelling the experimental results we consider coupled-channel calculations of the crossing of the ground state with the excited state at the Condon point. The coupled-channel calculations are first applied to model systems, where we consider two coupled channels without ionization, two coupled channels with ionization, and three coupled channels, for which only one of the excited states is ionizing. Finally, coupled-channel calculations are applied to photoassociation of He(^3S)-He(^3S) and good agreement is obtained between the model and the experimental results.Comment: 14 pages, 18 figures, submitted to the special issue on Cold Molecules of J. Phys.

    Timing performance of radiation hard MALTA monolithic Pixel sensors

    Get PDF
    The MALTA family of Depleted Monolithic Active Pixel Sensor (DMAPS) produced in Tower 180 nm CMOS technology targets radiation hard applications for the HL-LHC and beyond. Several process modifications and front-end improvements have resulted in radiation hardness up to 2×1015 1 MeV neq/cm22 \times 10^{15}~1~\text{MeV}~\text{n}_{eq}/\text{cm}^2 and time resolution below 2 ns, with uniform charge collection efficiency across the Pixel of size 36.4×36.4 μm236.4 \times 36.4~\mu\text{m}^2 with a 3 μm23~\mu\text{m}^2 electrode size. The MALTA2 demonstrator produced in 2021 on high-resistivity epitaxial silicon and on Czochralski substrates implements a new cascoded front-end that reduces the RTS noise and has a higher gain. This contribution shows results from MALTA2 on timing resolution at the nanosecond level from the CERN SPS test-beam campaign of 2021.Comment: 8 pages, 8 figures. Submitted to Journal of Instrumentation (JINST). Proceedings of the 23rd International Workshop on Radiation Imaging Detectors IWORID 202

    MALTA monolithic pixel sensors in TowerJazz 180 nm technology

    Get PDF
    Depleted Monolithic Active Pixel Sensors are of highest interest at the HL-LHC and beyond for the replacement of the Pixel trackers in the outermost layers of experiments where the requirement on total area and cost effectiveness is much bigger. They aim to provide high granularity and low material budget over large surfaces with ease of integration. Our research focuses on MALTA, a radiation hard DMAPS with small collection electrode designed in TowerJazz 180 nm CMOS imaging technology and asynchronous read-out. Latest prototypes are radiation hard up to 2 × 1015 1 MeV neq/cm2 with a time resolution better than 2 ns

    Depletion depth studies with the MALTA2 sensor, a depleted monolithic active pixel sensor

    Get PDF
    MALTA2 is a depleted monolithic active pixel sensor (DMAPS) developed in the Tower 180 nm CMOS imaging process. Monolithic CMOS sensors offer advantages over current hybrid imaging sensors both in terms of increased tracking performance due to lower material budget but also in terms of ease of integration and construction costs due to the monolithic design. Current research and development efforts are aimed towards radiation-hard designs up to 100 Mrad in Total Ionizing Dose and 3 × 1015 1 MeV neq / cm2 in Non-Ionizing Energy Loss. One important property of a sensor’s radiation hardness is the depletion depth at which efficient charge collection is achieved via drift movement. Grazing angle test-beam data was taken during the 2023 SPS CERN test beam with the MALTA telescope and Edge Transient Current Technique studies were performed at DESY in order to develop a quantitative study of the depletion depth for un-irradiated, epitaxial MALTA2 samples. The study is planned to be extended for irradiated and Czochralski MALTA2 samples

    Future developments of radiation tolerant sensors based on the MALTA architecture

    Get PDF
    The planned MALTA3 DMAPS designed in the standard TowerJazz 180 nm imaging process will implement the numerous process modifications, as well as front-end changes in order to boost the charge collection efficiency after the targeted fluence of 1 × 1015 1 MeV neq/cm2. The effectiveness of these changes have been demonstrated with recent measurements of the full size MALTA2 chip. With the original MALTA concept being fully asynchronous, a small-scale MiniMALTA demonstrator chip has been developed with the intention of bridging the gap between the asynchronous pixel matrix, and the synchronous DAQ. This readout architecture will serve as a baseline for MALTA3, with focus on improved timing performance. The synchronization memory has been upgraded to allow clock speeds of up to 1.28 GHz, with the goal of achieving a sub-nanosecond on-chip timing resolution. The subsequent digital readout chain has been modified and will be discussed in the context of the overall sensor architecture

    A 1-μW radiation-hard front-end in a 0.18-μm CMOS process for the MALTA2 monolithic sensor

    Get PDF
    In this article, a low-power, radiation-hard front-end circuit for monolithic pixel sensors, designed to meet the requirements of low noise and low pixel-to-pixel variability, the key features to achieve high detection efficiencies, is presented. The sensor features a small collection electrode to achieve a small capacitance (<5 fF) and allows full CMOS in-pixel circuitry. The circuit is implemented in the 180-nm CMOS imaging technology from the TowerJazz foundry and integrated into the MALTA2 chip, which is part of a development that targets the specifications of the outer pixel layer of the ATLAS Inner Tracker upgrade at the LHC. One of the main challenges for monolithic sensors is a radiation hardness up to 1015 1-MeV neq/cm2 non-ionizing energy loss (NIEL) and 80 Mrad total ionizing dose (TID) required for this application. Tests up to 3⋅1015 1-MeV neq/cm2 and 100 Mrad were performed on the MALTA2 sensor and front-end circuit, which still show good performance even after these levels of irradiation, promising for even more demanding applications such as the future experiments at the high-luminosity large hadron collider (HL-LHC)

    Development of a large-area, light-weight module using the MALTA monolithic pixel detector

    Get PDF
    The MALTA pixel chip is a 2 cm x 2 cm large monolithic pixel detector developed in the Tower 180 nm imaging process. The chip contains four CMOS transceiver blocks at its sides which allow chip-to-chip data transfer. The power pads are located mainly at the side edges on the chip which allows for chip-to-chip power transmission. The MALTA chip has been used to study module assembly using different interconnection techniques to transmit data and power from chip to chip and to minimize the overall material budget. Several 2-chip and 4-chip modules have been assembled using standard wire bonding, ACF (Anisotropic Conductive Films) and laser reflow interconnection techniques. These proceedings will summarize the experience with the different interconnection techniques and performance tests of MALTA modules with 2 and 4 chips tested in a cosmic muon telescope. They will also show first results on the effect of serial power tests on chip performance as well as the impact of the different interconnection techniques and the results of mechanical tests. Finally, a conceptual study for a flex based ultra-light weight monolithic pixel module based on the MALTA chip with minimum interconnections is presented

    Measurement of the total cross section and ρ -parameter from elastic scattering in pp collisions at √s=13 TeV with the ATLAS detector

    Get PDF

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and μτ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. Leptonic (τ → ℓνℓντ) and hadronic (τ → hadrons ντ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B B \mathcal{B} (H → eτ) < 0.20% (0.12%) and B B \mathcal{B} (H → μτ ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → μτ signals. The best-fit branching ratio difference, B B \mathcal{B} (H → μτ) → B B \mathcal{B} (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH &lt; 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 &lt; κλ &lt; 6.9 and −0.5 &lt; κ2V &lt; 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions
    corecore