1,488 research outputs found

    The formation and deformation of protein structures with viscoelastic properties

    Get PDF
    This study describes the formation of a gluten substitute. Chapter 1 describes the properties that are necessary to obtain a gluten substitute. Chapter 2 describes the formation and properties of protein particle suspensions. Two proteins with different intrinsic properties, gelatin and whey protein, were selected as model materials. Chapter 3 describes the effects of simple shear flow on the formation and properties of gelatin particle suspensions. The application of well-defined simple shear flow during phase separation was used to control the protein particle size in a gelatin–dextran system. Chapter 4 describes the formation and properties of whey protein particle suspensions having different particle sizes and different abilities to form disulphide bonds. Application of shear during their formation was used. Chapter 5 describes a novel concept for making elastic dough through combining a whey protein particle suspension with native wheat starch. Three differently structured whey protein suspensions were evaluated. Chapter 6 discusses the use of the whey protein particle suspensions prepared and used in chapter 5 for baking bread. Chapter 7 describes the role of molecular properties on the final dough and bread that were discussed in chapters 5 and 6. Chapter 8 summarizes the main findings of the project on “The formation and deformation of protein structures with viscoelastic properties”. </p

    Assessment of in situ immobilization of Lead (Pb) and Arsenic (As) in contaminated soils with phosphate and iron: solubility and bioaccessibility

    Get PDF
    The effect of in situ immobilization of lead (Pb) and arsenic (As) in soil with respectively phosphate and iron is well recognized. However, studies on combined Pb and As-contaminated soil are fewer, and assessment of the effectiveness of the immobilization on mobility and bioaccessibility is also necessary. In this study, a Pb and As-contaminated soil was collected from an abandoned lead/zinc mine in Shaoxing, Zhejiang province of China, which has been treated with three phosphates, i.e., calcium magnesium phosphate (CMP), phosphate rock, and single super-phosphate (SSP) for 6 months in a field study. The ferrous sulfate (FeSO4) at 20 g kg-1 was then amended to the soil samples and incubated for 8 weeks in a greenhouse. The solubility and bioaccessibility tests were used to assess the effectiveness of the in situ immobilization. The result showed that phosphates addition decreased the concentrations of CaCl2-extractable Pb; however, the concentrations of water-soluble As increased upon CMP and SSP addition. With the iron addition, the water-soluble As concentrations decreased significantly, but CaCl2-extractable Pb concentrations increased. The bioaccessibility of As and Pb measured in artificial gastric and small intestinal solutions decreased with phosphate and iron application except for the bioaccessibility of As in the gastric phase with SSP addition. Combined application of phosphates and iron can be an effective approach to lower bioaccessibility of As and Pb, but has opposing effects on mobility of As and Pb in contaminated soil

    Neuropsychiatric effects of antimalarial drugs

    Get PDF
    Malaria is a serious, potentially life threatening disease, and generally endemic in the (sub) tropics. Prevention may be carried out by interrupting transmission, by vector control and by giving travellers prophylactic drugs. The use of prophylactic drugs has generally been effective for both travellers and local inhabitants. However, due to the increase in resistance of P. Jalciparum against the available agents, the prevention of malaria is complicated

    FeEDDHA-facilitated Fe uptake in relation to the behaviour of FeEDDHA components in the soil-plant system as a function of time and dosage.

    Get PDF
    FeEDDHA products are widely used to prevent and remedy Fe chlorosis in crops grown on calcareous soils. These products consist of a mixture of FeEDDHA components: racemic o,o-FeEDDHA, meso o,o-FeEDDHA, o,p-FeEDDHA and rest-FeEDDHA. The FeEDDHA components differ in physical and chemical properties, and as a consequence also in effectiveness as Fe fertilizer. In order to efficiently match dose, frequency and moment of FeEDDHA application with the Fe requirements of plants, it is important to understand the behaviour of the FeEDDHA components in the soil-plant system as a function of time and dosage, and to relate this behaviour to Fe uptake by plants. These issues have been examined in a pot trial study with soybean plants (Glycine max (L.) Merr. cv Mycogen 5072) grown on calcareous soil from Santomera, Spain. Four FeEDDHA treatments (two compositions, two dosages) were applied prior to the set in of chlorosis. Leaching of FeEDDHA components was prevented. Plant and soil were sampled every week, for six weeks. From one week onward the Fe concentration in the pore water was largely gouverned by racemic and meso o,o-FeEDDHA. The concentration behaviour of the o,o-FeEDDHA isomers underwent two stages: a strong decline within the first week resulting from linear adsorption, and a gradual decline from one week onward. For meso o,o-FeEDDHA, unlike racemic o,o-FeDDHA, the gradual decline could be mathematically well described with an exponential decay function. Soybean plants mainly took up Fe in the progressed vegetative stage (3rd and 4th week) and in the reproductive stage, when the pods were being filled with seeds (6th week). Fe uptake and removal of racemic o,o-FeEDDHA from the soil system display a similar time-trend, whereas the removal of meso o,o-FeEDDHA had a plant-independent character. This indicates the removal of racemic o,o-FeEDDHA is to a larger extent plant-relate

    Clarification

    Get PDF

    Inner-sphere complexation of cations at the rutile-water interface: A concise surface structural interpretation with the CD and MUSIC model

    Get PDF
    Acid–base reactivity and ion-interaction between mineral surfaces and aqueous solutions is most frequently investigated at the macroscopic scale as a function of pH. Experimental data are then rationalized by a variety of surface complexation models. These models are thermodynamically based which in principle does not require a molecular picture. The models are typically calibrated to relatively simple solid-electrolyte solution pairs and may provide poor descriptions of complex multi-component mineral–aqueous solutions, including those found in natural environments. Surface complexation models may be improved by incorporating molecular-scale surface structural information to constrain the modeling efforts. Here, we apply a concise, molecularly-constrained surface complexation model to a diverse suite of surface titration data for rutile and thereby begin to address the complexity of multi-component systems. Primary surface charging curves in NaCl, KCl, and RbCl electrolyte media were fit simultaneously using a charge distribution (CD) and multisite complexation (MUSIC) model [Hiemstra T. and Van Riemsdijk W. H. (1996) A surface structural approach to ion adsorption: the charge distribution (CD) model. J. Colloid Interf. Sci. 179, 488–508], coupled with a Basic Stern layer description of the electric double layer. In addition, data for the specific interaction of Ca2+ and Sr2+ with rutile, in NaCl and RbCl media, were modeled. In recent developments, spectroscopy, quantum calculations, and molecular simulations have shown that electrolyte and divalent cations are principally adsorbed in various inner-sphere configurations on the rutile 1 1 0 surface [Zhang Z., Fenter P., Cheng L., Sturchio N. C., Bedzyk M. J., Predota M., Bandura A., Kubicki J., Lvov S. N., Cummings P. T., Chialvo A. A., Ridley M. K., Bénézeth P., Anovitz L., Palmer D. A., Machesky M. L. and Wesolowski D. J. (2004) Ion adsorption at the rutile–water interface: linking molecular and macroscopic properties. Langmuir 20, 4954–4969]. Our CD modeling results are consistent with these adsorbed configurations provided adsorbed cation charge is allowed to be distributed between the surface (0-plane) and Stern plane (1-plane). Additionally, a complete description of our titration data required inclusion of outer-sphere binding, principally for Cl- which was common to all solutions, but also for Rb+ and K+. These outer-sphere species were treated as point charges positioned at the Stern layer, and hence determined the Stern layer capacitance value. The modeling results demonstrate that a multi-component suite of experimental data can be successfully rationalized within a CD and MUSIC model using a Stern-based description of the EDL. Furthermore, the fitted CD values of the various inner-sphere complexes of the mono- and divalent ions can be linked to the microscopic structure of the surface complexes and other data found by spectroscopy as well as molecular dynamics (MD). For the Na+ ion, the fitted CD value points to the presence of bidenate inner-sphere complexation as suggested by a recent MD study. Moreover, its MD dominance quantitatively agrees with the CD model prediction. For Rb+, the presence of a tetradentate complex, as found by spectroscopy, agreed well with the fitted CD and its predicted presence was quantitatively in very good agreement with the amount found by spectroscopy

    FeEDDHA-facilitated Fe uptake in relation to the behaviour of FeEDDHA components in the soil-plant system as a function of time and dosage.

    Get PDF
    FeEDDHA products are widely used to prevent and remedy Fe chlorosis in crops grown on calcareous soils. These products consist of a mixture of FeEDDHA components: racemic o,o-FeEDDHA, meso o,o-FeEDDHA, o,p-FeEDDHA and rest-FeEDDHA. The FeEDDHA components differ in physical and chemical properties, and as a consequence also in effectiveness as Fe fertilizer. In order to efficiently match dose, frequency and moment of FeEDDHA application with the Fe requirements of plants, it is important to understand the behaviour of the FeEDDHA components in the soil-plant system as a function of time and dosage, and to relate this behaviour to Fe uptake by plants. These issues have been examined in a pot trial study with soybean plants (Glycine max (L.) Merr. cv Mycogen 5072) grown on calcareous soil from Santomera, Spain. Four FeEDDHA treatments (two compositions, two dosages) were applied prior to the set in of chlorosis. Leaching of FeEDDHA components was prevented. Plant and soil were sampled every week, for six weeks. From one week onward the Fe concentration in the pore water was largely gouverned by racemic and meso o,o-FeEDDHA. The concentration behaviour of the o,o-FeEDDHA isomers underwent two stages: a strong decline within the first week resulting from linear adsorption, and a gradual decline from one week onward. For meso o,o-FeEDDHA, unlike racemic o,o-FeDDHA, the gradual decline could be mathematically well described with an exponential decay function. Soybean plants mainly took up Fe in the progressed vegetative stage (3rd and 4th week) and in the reproductive stage, when the pods were being filled with seeds (6th week). Fe uptake and removal of racemic o,o-FeEDDHA from the soil system display a similar time-trend, whereas the removal of meso o,o-FeEDDHA had a plant-independent character. This indicates the removal of racemic o,o-FeEDDHA is to a larger extent plant-relate

    Making animal welfare matter : Positioning animal welfare as personally relevant

    Get PDF
    Despite the positive consumer attitudes towards animal welfare, and an increasing supply of animal welfare enhanced meat, consumers still mainly opt for conventional meat instead of meat produced with higher animal welfare standards. This thesis argues that consumers may do so because they must trade off personally relevant benefits, such as low price or convenience, for animal welfare when buying animal welfare enhanced meat. It provides theoretical arguments, as well as empirical evidence that marketing strategies can be effective in encouraging consumers to switch to animal welfare enhanced meat if they position animal welfare as personally relevant (i.e., they emphasize personally relevant benefits) and provide a guarantee for the claimed animal welfare. Specifically, strategies invoking positive feelings and provoking curiosity are found effective to encourage consumers to buy free-range meat, although their effectiveness is contingent on the guarantee provided by a certified label and may be limited for consumers having conflicting attitudes towards meat (e.g., by associating eating meat with positive and negative outcomes). Some care should therefore be taken when designing awareness campaigns about the effects of meat consumption and animal welfare as they could potentially discourage consumers to switch to more animal-friendly products.</p
    corecore