200 research outputs found

    Mechanical cell-matrix feedback explains pairwise and collective endothelial cell behavior in vitro

    Full text link
    In vitro cultures of endothelial cells are a widely used model system of the collective behavior of endothelial cells during vasculogenesis and angiogenesis. When seeded in an extracellular matrix, endothelial cells can form blood vessel-like structures, including vascular networks and sprouts. Endothelial morphogenesis depends on a large number of chemical and mechanical factors, including the compliancy of the extracellular matrix, the available growth factors, the adhesion of cells to the extracellular matrix, cell-cell signaling, etc. Although various computational models have been proposed to explain the role of each of these biochemical and biomechanical effects, the understanding of the mechanisms underlying in vitro angiogenesis is still incomplete. Most explanations focus on predicting the whole vascular network or sprout from the underlying cell behavior, and do not check if the same model also correctly captures the intermediate scale: the pairwise cell-cell interactions or single cell responses to ECM mechanics. Here we show, using a hybrid cellular Potts and finite element computational model, that a single set of biologically plausible rules describing (a) the contractile forces that endothelial cells exert on the ECM, (b) the resulting strains in the extracellular matrix, and (c) the cellular response to the strains, suffices for reproducing the behavior of individual endothelial cells and the interactions of endothelial cell pairs in compliant matrices. With the same set of rules, the model also reproduces network formation from scattered cells, and sprouting from endothelial spheroids. Combining the present mechanical model with aspects of previously proposed mechanical and chemical models may lead to a more complete understanding of in vitro angiogenesis.Comment: 25 pages, 6 figures, accepted for publication in PLoS Computational Biolog

    Direct magneto-optical compression of an effusive atomic beam for high-resolution focused ion beam application

    Get PDF
    An atomic rubidium beam formed in a 70 mm long two-dimensional magneto-optical trap (2D MOT), directly loaded from a collimated Knudsen source, is analyzed using laser-induced fluorescence. The longitudinal velocity distribution, the transverse temperature and the flux of the atomic beam are reported. The equivalent transverse reduced brightness of an ion beam with similar properties as the atomic beam is calculated because the beam is developed to be photoionized and applied in a focused ion beam. In a single two-dimensional magneto-optical trapping step an equivalent transverse reduced brightness of (1.0+0.8−0.4)(1.0\substack{+0.8-0.4}) ×106\times 10^6 A/(m2^2 sr eV) was achieved with a beam flux equivalent to (0.6+0.3−0.2)(0.6\substack{+0.3-0.2}) nA. The temperature of the beam is further reduced with an optical molasses after the 2D MOT. This increased the equivalent brightness to (6+5−2)(6\substack{+5-2})×106\times 10^6 A/(m2^2 sr eV). For currents below 10 pA, for which disorder-induced heating can be suppressed, this number is also a good estimate of the ion beam brightness that can be expected. Such an ion beam brightness would be a six times improvement over the liquid metal ion source and could improve the resolution in focused ion beam nanofabrication.Comment: 10 pages, 8 figures, 1 tabl

    Theory and particle tracking simulations of a resonant radiofrequency deflection cavity in TM110_{110} mode for ultrafast electron microscopy

    Full text link
    We present a theoretical description of resonant radiofrequency (RF) deflecting cavities in TM110_{110} mode as dynamic optical elements for ultrafast electron microscopy. We first derive the optical transfer matrix of an ideal pillbox cavity and use a Courant-Snyder formalism to calculate the 6D phase space propagation of a Gaussian electron distribution through the cavity. We derive closed, analytic expressions for the increase in transverse emittance and energy spread of the electron distribution. We demonstrate that for the special case of a beam focused in the center of the cavity, the low emittance and low energy spread of a high quality beam can be maintained, which allows high-repetition rate, ultrafast electron microscopy with 100 fs temporal resolution combined with the atomic resolution of a high-end TEM. This is confirmed by charged particle tracking simulations using a realistic cavity geometry, including fringe fields at the cavity entrance and exit apertures

    Age-Related Changes in Frontal Network Structural and Functional Connectivity in Relation to Bimanual Movement Control

    Get PDF
    Changes in both brain structure and neurophysiological function regulating homotopic as well as heterotopic interhemispheric interactions (IHIs) are assumed to be responsible for the bimanual performance deficits in older adults. However, how the structural and functional networks regulating bimanual performance decline in older adults, as well as the interplay between brain structure and function remain largely unclear. Using a dual-site transcranial magnetic stimulation paradigm, we examined the age-related changes in the interhemispheric effects from the dorsolateral prefrontal cortex and dorsal premotor cortex onto the contralateral primary motor cortex (M1) during the preparation of a complex bimanual coordination task in human. Structural properties of these interactions were assessed with diffusion-based fiber tractography. Compared with young adults, older adults showed performance declines in the more difficult bimanual conditions, less optimal brain white matter (WM) microstructure, and a decreased ability to regulate the interaction between dorsolateral prefrontal cortex and M1. Importantly, we found that WM microstructure, neurophysiological function, and bimanual performance were interrelated in older adults, whereas only the task-related changes in IHI predicted bimanual performance in young adults. These results reflect unique interactions between structure and function in the aging brain, such that declines in WM microstructural organization likely lead to dysfunctional regulation of IHI, ultimately accounting for bimanual performance deficits

    Effective and Efficient Stand Magnifier Use in Visually Impaired Children

    Get PDF
    Contains fulltext : 167758.pdf (publisher's version ) (Open Access)PURPOSE: The main objective of this study was to analyze the effectiveness and efficiency of magnifier use in children with visual impairment who did not use a low vision aid earlier, in an ecologically valid goal-directed perceptuomotor task. METHODS: Participants were twenty-nine 4- to 8-year-old children with visual impairment and 47 age-matched children with normal vision. After seeing a first symbol (an Lea Hyvarinen [LH] symbol), children were instructed to (1) move the stand magnifier as quickly as possible toward a small target symbol (another LH symbol that could only be seen by using the magnifier), (2) compare the two symbols, and (3) move the magnifier to one of two response areas to indicate whether the two symbols were identical. Performance was measured in terms of accuracy, response time, identification time, and movement time. Viewing distance, as well as hand and eye dominance while using the magnifier was assessed. RESULTS: There were no significant differences between the two groups in accuracy, reaction time, and movement time. Contrary to the prediction, children with visual impairment required less time to identify small symbols than children with normal vision. Both within-subject and between-subject variability in viewing distance were smaller in the visually impaired group than in the normally sighted group. In the visually impaired group, a larger viewing distance was associated with shorter identification time, which in turn was associated with higher accuracy. In the normally sighted group, a faster movement with the magnifier and a faster identification were associated with increasing age. CONCLUSION: The findings indicate that children with visual impairment can use the stand magnifier adequately and efficiently. The normally sighted children show an age-related development in movement time and identification time and show more variability in viewing distance, which is not found in visually impaired children. Visually impaired children seem to choose a standard but less adaptive strategy in which they primarily used their preferred hand to manipulate the magnifier and their preferred eye to identify the symbol. TRIAL REGISTRATION: Registered at http://www.trialregister.nl; NTR2380.11 p

    Visuele beperkingen bij ouderen in Nederland – risicogroepen en mogelijkheden tot interventie

    Get PDF
    Doel Het in kaart brengen van het aantal ouderen met een visuele beperking in Nederland, nu en in de toekomst. Mogelijkheden tot interventie worden aangegeven. Methode en materiaal De schattingen zijn gebaseerd op een recent onderzoek in opdracht van Stichting InZicht, ZonMw, waarin literatuur gegevens over prevalentie van blindheid en slechtziendheid en de oorzaken daarvan uit bevolkingsonderzoeken in Nederland, West Europa, de Verenigde Staten en Australië zijn gerelateerd aan de laatste demografische gegevens voor Nederland. Resultaten Van de 16,4 miljoen Nederlanders in 2008 zijn er 2,4 miljoen (14,7%) 65 jaar of ouder. Van deze laatste groep wonen 155.000 mensen in een verpleeg of verzorgingshuis, de rest woont zelfstandig. In 2008 zijn naar schatting 77.000 Nederlanders blind en 234.000 slechtziend. Van hen is 79% 65 jaar of ouder. Van de ouderen in instellingen is 20% blind (32.000) en 22% slechtziend (34.000). Bij 62% van hen is de visuele beperking te behandelen of was te voorkomen geweest (‘vermijdbaar’). Van de zelfstandig wonende ouderen is 1,2% blind (27.000) en 6,8% slechtziend (154.000). Bij 57% van hen is de aandoening vermijdbaar. Conclusie In 2008 hebben 247.000 ouderen een visuele beperking die bij 143.000 (58%) van hen te behandelen is of te voorkomen was geweest. Screening en behandeling van ouderen in instellingen lijkt aangewezen, evenals voorlichting aan en gerichte screening van zelfstandig wonende ouderen

    Referral for rehabilitation in case of permanent visual handicap:guideline of the Dutch Society of Ophthalmology

    Get PDF
    The Dutch Society of Ophthalmology (NOG) has developed an evidence-based guideline for the referral of visually impaired people for rehabilitation and support. Referral for rehabilitation and support must be preceded by diagnosis and treatment. Consultation of an ophthalmologist is essential. Information about the disease should be given to the patient orally as well as in writing. The ophthalmologist brings up the possibility of rehabilitation in the presence of a visual acuity &lt; 0.5 and/or visual field of &lt; 30 degrees in the better eye and a well-defined request for help. Visually impaired patients with a relatively simple request for help are referred to a specialised optometrist whenever possible. Visually impaired patients with more complex requests for help are referred to a multidisciplinary (regional or national) rehabilitation centre for people with a visual handicap. Visually impaired and blind patients are informed about the existence of patient organisations. Referral for rehabilitation is done by means of a structured letter with all relevant information. A copy of this letter should be sent to the family physician and all other attending physicians.</p
    • …
    corecore