678 research outputs found

    Aggregation of ecological indicators for mapping aquatic nature quality : overview of existing methods and case studies

    Get PDF
    Indicators for aquatic nature quality are calculated using ecological monitoring data from individual sampling stations. For reporting purposes, these results need to be aggregated and scaled up to higher levels (catchment area, country). This report provides an overview of different existing spatial aggregation methods for this purpose, including an evaluation of their suitability for aquatic ecological indicators. So-called „model-based„ methods, consisting of some sort of „kriging¿ step followed by calculation of the arithmetic mean, appeared to be the most appropriate. Application of these methods to multimetric indicators of aquatic macroinvertebrates in two Dutch subcatchment areas confirmed their suitability. However, the methods that were used were based on aggregation (using kriging) over Euclidian (straight), distances. It is recommended to conduct further research on the suitability of interpolation through stream networks, i.e., through the waterways themselves

    Ultracold atoms in optical lattices

    Get PDF
    Bosonic atoms trapped in an optical lattice at very low temperatures, can be modeled by the Bose-Hubbard model. In this paper, we propose a slave-boson approach for dealing with the Bose-Hubbard model, which enables us to analytically describe the physics of this model at nonzero temperatures. With our approach the phase diagram for this model at nonzero temperatures can be quantified.Comment: 29 pages, 10 figure

    Quantum phases in a resonantly-interacting Bose-Fermi mixture

    Full text link
    We consider a resonantly-interacting Bose-Fermi mixture of 40^{40}K and 87^{87}Rb atoms in an optical lattice. We show that by using a red-detuned optical lattice the mixture can be accurately described by a generalized Hubbard model for 40^{40}K and 87^{87}Rb atoms, and 40^{40}K-87^{87}Rb molecules. The microscopic parameters of this model are fully determined by the details of the optical lattice and the interspecies Feshbach resonance in the absence of the lattice. We predict a quantum phase transition to occur in this system already at low atomic filling fraction, and present the phase diagram as a function of the temperature and the applied magnetic field.Comment: 4 pages, 3 figure

    Modelling and experiments of self-reflectivity under femtosecond ablation conditions

    Full text link
    We present a numerical model which describes the propagation of a single femtosecond laser pulse in a medium of which the optical properties dynamically change within the duration of the pulse. We use a Finite Difference Time Domain (FDTD) method to solve the Maxwell's equations coupled to equations describing the changes in the material properties. We use the model to simulate the self-reflectivity of strongly focused femtosecond laser pulses on silicon and gold under laser ablation condition. We compare the simulations to experimental results and find excellent agreement.Comment: 11 pages, 8 figure

    Mott insulators in an optical lattice with high filling factors

    Full text link
    We discuss the superfluid to Mott insulator transition of an atomic Bose gas in an optical lattice with high filling factors. We show that also in this multi-band situation, the long-wavelength physics is described by a single-band Bose-Hubbard model. We determine the many-body renormalization of the tunneling and interaction parameters in the effective Bose-Hubbard Hamiltonian, and consider the resulting model at nonzero temperatures. We show that in particular for a one or two-dimensional optical lattice, the Mott insulator phase is more difficult to realize than anticipated previously.Comment: 5 pages, 3 figures, title changed, major restructuring, resubmitted to PR

    On the Role of Penning Ionization in Photoassociation Spectroscopy

    Full text link
    We study the role of Penning ionization on the photoassociation spectra of He(^3S)-He(^3S). The experimental setup is discussed and experimental results for different intensities of the probe laser are shown. For modelling the experimental results we consider coupled-channel calculations of the crossing of the ground state with the excited state at the Condon point. The coupled-channel calculations are first applied to model systems, where we consider two coupled channels without ionization, two coupled channels with ionization, and three coupled channels, for which only one of the excited states is ionizing. Finally, coupled-channel calculations are applied to photoassociation of He(^3S)-He(^3S) and good agreement is obtained between the model and the experimental results.Comment: 14 pages, 18 figures, submitted to the special issue on Cold Molecules of J. Phys.

    N-Isopropyl­benzamide

    Get PDF
    In the title compound, C10H13NO, the dihedral angle between the amide group and the phenyl ring is 30.0 (3)°. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link mol­ecules into one-dimensional chains along the a axis

    Excitations of a Bose-Einstein condensate in a one-dimensional optical lattice

    Full text link
    We investigate the low-lying excitations of a stack of weakly-coupled two-dimensional Bose-Einstein condensates that is formed by a one-dimensional optical lattice. In particular, we calculate the dispersion relations of the monopole and quadrupole modes, both for the ground state as well as for the case in which the system contains a vortex along the direction of the lasers creating the optical lattice. Our variational approach enables us to determine analytically the dispersion relations for an arbitrary number of atoms in every two-dimensional condensate and for an arbitrary momentum. We also discuss the feasibility of experimentally observing our results.Comment: 16 pages, 5 figures, minor changes,accepted for publication in Phys. Rev.

    Loops versus lines and the compression stiffening of cells

    Get PDF
    Both animal and plant tissue exhibit a nonlinear rheological phenomenon known as compression stiffening, or an increase in moduli with increasing uniaxial compressive strain. Does such a phenomenon exist in single cells, which are the building blocks of tissues? One expects an individual cell to compression soften since the semiflexible biopolymer-based cytoskeletal network maintains the mechanical integrity of the cell and in vitro semiflexible biopolymer networks typically compression soften. To the contrary, we find that mouse embryonic fibroblasts (mEFs) compression stiffen under uniaxial compression via atomic force microscopy (AFM) studies. To understand this finding, we uncover several potential mechanisms for compression stiffening. First, we study a single semiflexible polymer loop modeling the actomyosin cortex enclosing a viscous medium modeled as an incompressible fluid. Second, we study a two-dimensional semiflexible polymer/fiber network interspersed with area-conserving loops, which are a proxy for vesicles and fluid-based organelles. Third, we study two-dimensional fiber networks with angular-constraining crosslinks, i.e. semiflexible loops on the mesh scale. In the latter two cases, the loops act as geometric constraints on the fiber network to help stiffen it via increased angular interactions. We find that the single semiflexible polymer loop model agrees well with our AFM experiments until approximately 35% compressive strain. We also find for the fiber network with area-conserving loops model that the stress-strain curves are sensitive to the packing fraction and size distribution of the area-conserving loops, thereby creating a mechanical fingerprint across different cell types. Finally, we make comparisons between this model and experiments on fibrin networks interlaced with beads as well as discuss the tissue-scale implications of cellular compression stiffening.Comment: 19 pages, 17 figure

    Insulator-Superfluid transition of spin-1 bosons in an optical lattice in magnetic field

    Full text link
    We study the insulator-superfluid transition of spin-1 bosons in an optical lattice in a uniform magnetic field. Based on a mean-field approximation we obtained a zero-temperature phase diagram. We found that depending on the particle number the transition for bosons with antiferromagnetic interaction may occur into different superfluid phases with spins aligned along or opposite to the field direction. This is qualitatively different from the field-free transition for which the mean-field theory predicts a unique (polar) superfluid state for any particle number.Comment: 10 pages, 2 eps figure
    corecore