18 research outputs found

    Ribonucleoprotein particles of bacterial small non-coding RNA IsrA (IS61 or McaS) and its interaction with RNA polymerase core may link transcription to mRNA fate

    Get PDF
    Coupled transcription and translation in bacteria are tightly regulated. Some small RNAs (sRNAs) control aspects of this coupling by modifying ribosome access or inducing degradation of the message. Here, we show that sRNA IsrA (IS61 or McaS) specifically associates with core enzyme of RNAP in vivo and in vitro, independently of σ factor and away from the main nucleic-acids-binding channel of RNAP. We also show that, in the cells, IsrA exists as ribonucleoprotein particles (sRNPs), which involve a defined set of proteins including Hfq, S1, CsrA, ProQ and PNPase. Our findings suggest that IsrA might be directly involved in transcription or can participate in regulation of gene expression by delivering proteins associated with it to target mRNAs through its interactions with transcribing RNAP and through regions of sequence-complementarity with the target. In this eukaryotic-like model only in the context of a complex with its target, IsrA and its associated proteins become active. In this manner, in the form of sRNPs, bacterial sRNAs could regulate a number of targets with various outcomes, depending on the set of associated proteins

    Puf6 primes 60S pre-ribosome nuclear export at low temperature

    Get PDF
    Productive ribosomal RNA (rRNA) compaction during ribosome assembly necessitates establishing correct tertiary contacts between distant secondary structure elements. Here, we quantify the response of the yeast proteome to low temperature (LT), a condition where aberrant mis-paired RNA folding intermediates accumulate. We show that, at LT, yeast cells globally boost production of their ribosome assembly machinery. We find that the LT-induced assembly factor, Puf6, binds to the nascent catalytic RNA-rich subunit interface within the 60S pre-ribosome, at a site that eventually loads the nuclear export apparatus. Ensemble Förster resonance energy transfer studies show that Puf6 mimics the role of Mg2+ to usher a unique long-range tertiary contact to compact rRNA. At LT, puf6 mutants accumulate 60S pre-ribosomes in the nucleus, thus unveiling Puf6-mediated rRNA compaction as a critical temperature-regulated rescue mechanism that counters rRNA misfolding to prime export competence.ISSN:2041-172

    The Nrd1-like protein Seb1 coordinates cotranscriptional 3′ end processing and polyadenylation site selection

    Get PDF
    Termination of RNA polymerase II (RNAPII) transcription is associated with RNA 3 end formation. For coding genes, termination is initiated by the cleavage/polyadenylation machinery. In contrast, a majority of noncoding transcription events in Saccharomyces cerevisiae does not rely on RNA cleavage for termination but instead terminates via a pathway that requires the Nrd1-Nab3-Sen1 (NNS) complex. Here we show that the Schizosaccharomyces pombe ortholog of Nrd1, Seb1, does not function in NNS-like termination but promotes polyadenylation site selection of coding and noncoding genes. We found that Seb1 associates with 3 end processing factors, is enriched at the 3 end of genes, and binds RNA motifs downstream from cleavage sites. Importantly, a deficiency in Seb1 resulted in widespread changes in 3 untranslated region (UTR) length as a consequence of increased alternative polyadenylation. Given that Seb1 levels affected the recruitment of conserved 3 end processing factors, our findings indicate that the conserved RNA-binding protein Seb1 cotranscriptionally controls alternative polyadenylation

    Specialized box C/D snoRNPs act as antisense guides to target RNA base acetylation

    Get PDF
    Box C/D snoRNAs are known to guide site-specific ribose methylation of ribosomal RNA. Here, we demonstrate a novel and unexpected role for box C/D snoRNAs in guiding 18S rRNA acetylation in yeast. Our results demonstrate, for the first time, that the acetylation of two cytosine residues in 18S rRNA catalyzed by Kre33 is guided by two orphan box C/D snoRNAs–snR4 and snR45 –not known to be involved in methylation in yeast. We identified Kre33 binding sites on these snoRNAs as well as on the 18S rRNA, and demonstrate that both snR4 and snR45 establish extended bipartite complementarity around the cytosines targeted for acetylation, similar to pseudouridylation pocket formation by the H/ACA snoRNPs. We show that base pairing between these snoRNAs and 18S rRNA requires the putative helicase activity of Kre33, which is also needed to aid early pre-rRNA processing. Compared to yeast, the number of orphan box C/D snoRNAs in higher eukaryotes is much larger and we hypothesize that several of these may be involved in base-modifications

    Saccharomyces SRP RNA secondary structures: A conserved S-domain and extended Alu-domain

    No full text
    The contribution made by the RNA component of signal recognition particle (SRP) to its function in protein targeting is poorly understood. We have generated a complete secondary structure for Saccharomyces cerevisiae SRP RNA, scR1. The structure conforms to that of other eukaryotic SRP RNAs. It is rod-shaped with, at opposite ends, binding sites for proteins required for the SRP functions of signal sequence recognition (S-domain) and translational elongation arrest (Alu-domain). Micrococcal nuclease digestion of purified S. cerevisiae SRP separated the S-domain of the RNA from the Alu-domain as a discrete fragment. The Alu-domain resolved into several stable fragments indicating a compact structure. Comparison of scR1 with SRP RNAs of five yeast species related to S. cerevisiae revealed the S-domain to be the most conserved region of the RNA. Extending data from nuclease digestion with phylogenetic comparison, we built the secondary structure model for scR1. The Alu-domain contains large extensions, including a sequence with hallmarks of an expansion segment. Evolutionarily conserved bases are placed in the Alu- and S-domains as in other SRP RNAs, the exception being an unusual GU(4)A loop closing the helix onto which the signal sequence binding Srp54p assembles (domain IV). Surprisingly, several mutations within the predicted Srp54p binding site failed to disrupt SRP function in vivo. However, the strength of the Srp54p–scR1 and, to a lesser extent, Sec65p–scR1 interaction was decreased in these mutant particles. The availability of a secondary structure for scR1 will facilitate interpretation of data from genetic analysis of the RNA

    The Spatial-Functional Coupling of Box C/D and C′/D′ RNPs Is an Evolutionarily Conserved Feature of the Eukaryotic Box C/D snoRNP Nucleotide Modification Complex ▿ †

    No full text
    Box C/D ribonucleoprotein particles guide the 2′-O-ribose methylation of target nucleotides in both archaeal and eukaryotic RNAs. These complexes contain two functional centers, assembled around the C/D and C′/D′ motifs in the box C/D RNA. The C/D and C′/D′ RNPs of the archaeal snoRNA-like RNP (sRNP) are spatially and functionally coupled. Here, we show that similar coupling also occurs in eukaryotic box C/D snoRNPs. The C/D RNP guided 2′-O-methylation when the C′/D′ motif was either mutated or ablated. In contrast, the C′/D′ RNP was inactive as an independent complex. Additional experiments demonstrated that the internal C′/D′ RNP is spatially coupled to the terminal box C/D complex. Pulldown experiments also indicated that all four core proteins are independently recruited to the box C/D and C′/D′ motifs. Therefore, the spatial-functional coupling of box C/D and C′/D′ RNPs is an evolutionarily conserved feature of both archaeal and eukaryotic box C/D RNP complexes

    A nomenclature for all signal recognition particle RNAs

    No full text
    The signal recognition particle (SRP) is a cytosolic ribonucleoprotein complex that guides secretory proteins to biological membranes in all organisms. The SRP RNA is at the center of the structure and function of the SRP. The comparison of the growing number of SRP RNA sequences provides a rich source for gaining valuable insight into the composition, assembly, and phylogeny of the SRP. In order to assist in the continuation of these studies, we propose an SRP RNA nomenclature applicable to the three divisions of life
    corecore