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Abstract 27 

By shaping gene expression profiles, small RNAs (sRNAs) enable bacteria to 28 

efficiently adapt to changes in their environment. To better understand how Escherichia coli 29 

acclimatizes to nutrient availability, we performed UV cross-linking, ligation and sequencing 30 

of hybrids (CLASH) to uncover Hfq-associated RNA-RNA interactions at specific growth 31 

stages. We demonstrate that Hfq CLASH robustly captures bona fide RNA-RNA interactions 32 

identified hundreds of novel sRNA base-pairing interactions, including many sRNA-sRNA 33 

interactions and involving 3’UTR-derived sRNAs. We rediscovered known and identified 34 

novel sRNA seed sequences. The sRNA-mRNA interactions identified by CLASH have 35 

strong base-pairing potential and are highly enriched for complementary sequence motifs, 36 

even those supported by only a few reads. Yet, steady state levels of most mRNA targets 37 

were not significantly affected upon over-expression of the sRNA regulator. Our results 38 

reinforce the idea that the reproducibility of the interaction, not base-pairing potential, is a 39 

stronger predictor for a regulatory outcome.   40 
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Microorganisms are renowned for their ability to adapt to environmental changes by 41 

rapidly rewiring their gene expression program. These responses are mediated through 42 

integrated transcriptional and post-transcriptional networks. Transcriptional control dictates 43 

which genes are expressed (Balleza et al., 2009; Martínez-Antonio et al., 2008) and is well-44 

characterised in Escherichia coli. Post-transcriptional regulation is key for controlling 45 

adaptive responses. By using riboregulators and RNA-binding proteins (RBPs), cells can 46 

efficiently integrate multiple pathways and incorporate additional signals into regulatory 47 

circuits. E. coli employs many post-transcriptional regulators, including small regulatory 48 

RNAs (sRNAs (Waters and Storz, 2009)), cis-acting RNAs (Kortmann and Narberhaus, 49 

2012), and RNA binding proteins (RBPs) (Holmqvist and Vogel, 2018). The sRNAs are the 50 

largest class of bacterial regulators, working in tandem with RBPs to regulate their RNA 51 

targets (Storz et al., 2011; Waters and Storz, 2009). By base-pairing with their targets, small 52 

RNAs can repress or stimulate translation and transcription elongation and control the 53 

stability of transcripts (Sedlyarova et al., 2016; Updegrove et al., 2016; Vogel and Luisi, 54 

2011; Waters and Storz, 2009) 55 

Base-pairing interactions are often mediated by RNA chaperones such as Hfq and 56 

ProQ, which help to anneal or stabilize the sRNA and sRNA-target duplex (Melamed et al., 57 

2020, 2016; Smirnov et al., 2017, 2016; Updegrove et al., 2016). Although Hfq is most 58 

frequently mentioned in association with sRNA-mediated regulation, it can also control gene 59 

expression independently of sRNAs in response to environmental changes (Salvail et al., 60 

2013; Sonnleitner and Bläsi, 2014). In Pseudomonas aeruginosa, Hfq directly binds to 61 

mRNAs to repress translation in response to changes in nutrient availability, which relies on 62 

a protein co-factor Crc that acts cooperatively with Hfq to inhibit translation (Pei et al., 2019; 63 

Sonnleitner and Bläsi, 2014). 64 

 During growth in rich media, E. coli are exposed to continuously changing conditions, 65 

such as fluctuations in nutrient availability, pH and osmolarity. Consequently, E. coli elicit 66 

complex responses that result in physiological and behavioural changes such as envelope 67 

composition remodelling, quorum sensing, nutrient scavenging, swarming and biofilm 68 

formation. Even subtle changes in the growth conditions can trigger rapid adaptive 69 

responses.  70 

Accordingly, each stage of the growth curve is characterised by different physiological states 71 

driven by the activation of different transcriptional and post-transcriptional networks. 72 

Moreover, growth phase dependency of virulence and pathogenic behaviour has been 73 

demonstrated in both Gram-positive and Gram-negative bacteria. In some cases a particular 74 

growth stage is non-permissive for the induction of virulence (Mäder et al., 2016; Mouali et 75 

al., 2018). Although the exponential and stationary phases have been characterised in detail 76 

(Navarro Llorens et al., 2010; Pletnev et al., 2015), little is known about the transition 77 
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between these two phases. During this transition, the cell population starts to scavenge 78 

alternative carbon sources, which requires rapid remodelling of their transcriptome (Baev et 79 

al., 2006a, 2006b; Sezonov et al., 2007).  80 

To understand sRNA-mediated adaptive responses, detailed knowledge of the 81 

underlying post-transcriptional circuits is required. In E. coli, hundreds of sRNAs have been 82 

discovered, and only a small fraction of these have been characterised. A key step to 83 

unravel the roles of sRNAs in regulating adaptive responses is to identify their target 84 

mRNAs. To tackle this at genome-wide level, high-throughput methods have been 85 

developed to uncover sRNA base-pairing interactions (Han et al., 2016; Hör et al., 2018; Hör 86 

and Vogel, 2017; Lalaouna et al., 2015a; Melamed et al., 2016; Waters et al., 2017). 87 

 To unravel sRNA base-pairing interactions taking place during the entry into 88 

stationary phase, we applied UV cross-linking, ligation and sequencing of hybrids (CLASH) 89 

(Helwak et al., 2013; Kudla et al., 2011) to E. coli. Firstly, we demonstrate that the highly 90 

stringent purification steps make CLASH a robust method for direct mapping of Hfq-91 

mediated sRNA base-pairing interactions in E. coli. This enabled us to significantly expand 92 

on the sRNA base-pairing interactions found by RNase E CLASH (Waters et al., 2017) and 93 

RIL-seq (Melamed et al., 2016).  Additionally, we identified a plethora of sRNA-sRNA 94 

interactions and potentially novel 3’UTR-derived sRNAs, confirming that this class of sRNAs 95 

is highly prevalent (Chao et al., 2012, 2017; Chao and Vogel, 2016; Miyakoshi et al., 2015a). 96 

The sRNA-mRNA interactions identified by CLASH have a high base-pairing potential and 97 

are strongly enriched for complementary sequence motifs, even those supported by only a 98 

few chimeric reads. We rediscovered known and identified novel sRNA seed sequences, 99 

implying they represent genuine in vivo interactions. However, in many cases, over-100 

expression of the sRNA did not significantly impact the steady state levels of putative mRNA 101 

targets. Although base-pairing potential is important, our results reinforce the notion that 102 

reproducibly detected interactions, are more likely to impact target steady-state levels 103 

(Faigenbaum-Romm et al., 2020). 104 

 105 

Results 106 

Hfq CLASH in E. coli. 107 

To unravel the post-transcriptional networks that underlie the transition between 108 

exponential and stationary growth phases in E. coli, we performed CLASH (Helwak et al., 109 

2013; Kudla et al., 2011) using Hfq as bait (Figure 1A). To generate high quality Hfq CLASH 110 

data, we made a number of improvements to the original protocol used for RNase E CLASH 111 

(Waters et al., 2017). Our Hfq CLASH protocol has several advantages over the related RIL-112 

seq method (see Materials and Methods and Discussion). As negative controls, replicate 113 
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CLASH experiments were performed on the untagged parental strain. When combined, the 114 

control samples had ~10 times less single-mapping reads and contained only 297 unique 115 

chimeric reads, compared to the over 50,000 chimeras identified in the tagged Hfq data. 116 

This result demonstrates that the CLASH purification method produced very low background 117 

levels.  118 

Cell samples from seven different optical densities were subjected to Hfq CLASH. 119 

Based on the growth curve analysis shown in Figure 1B, we categorized OD600 densities
 
0.4 120 

and 0.8 as exponential growth phase, 1.2, 1.8, 2.4 as the transition phase from exponential 121 

to stationary, and 3.0 and 4.0 as early stationary phase. To complement the CLASH data, 122 

RNA-seq and Western blot analyses were performed on UV-irradiated cells to quantify 123 

steady state RNA and Hfq protein levels, respectively (Figure 1C, Figure 1 - figure 124 

supplement 1). Western blot analyses revealed that Hfq levels were very modestly increased 125 

during growth (Figure 1 - figure supplement 1A-B). To determine the cross-linking efficiency, 126 

Hfq-RNA complexes immobilized on nickel beads were radiolabelled, resolved on NuPAGE 127 

gels and analysed by autoradiography. The data show that the recovery of Hfq and 128 

radioactive signal was comparable at each optical density studied (Figure 1 - figure 129 

supplement 1C). Comparison of normalized read counts of replicate CLASH and RNA-seq 130 

experiments showed that the results were highly reproducible (Figure 1 - figure supplement 131 

2). Meta-analyses of the Hfq CLASH sequencing data revealed that the distribution of Hfq 132 

binding across mRNAs was very similar at each growth stage. We observed the expected 133 

Hfq enrichment at the 5’UTRs and at the 3’UTRs at each growth stage (Figure 1 - figure 134 

supplement 3A and 3B for examples). After identifying significantly enriched Hfq binding 135 

peaks (FDR <= 0.05; see Methods for details) we used the genomic coordinates of these 136 

peaks to search for Hfq binding motifs in mRNAs. The most enriched k-mer included poly-U 137 

stretches (Figure 1 - figure supplement 3C) that resemble the poly-U tracts characteristic to 138 

Rho-independent terminators found at the end of many bacterial transcripts (Wilson and 139 

Hippel, 1995), and confirms the motif uncovered in CLIP-seq studies in Salmonella 140 

(Holmqvist et al., 2016).  141 

 142 

Hfq CLASH robustly detects RNA-RNA interactions. 143 

To get the complete catalogue of the RNA-RNA interactions captured by Hfq CLASH, 144 

we merged the data from the two biological replicates of CLASH growth phase experiments 145 

(Supplementary File 1). Overlapping paired-end reads were merged and unique chimeric 146 

reads were identified using the hyb pipeline (Travis et al., 2013). To select RNA-RNA  147 

interactions for further studies, we applied a probabilistic analysis pipeline previously used 148 

for detecting RNA-RNA interactions in human cells (Sharma et al., 2016) and adapted for 149 

the analyses of RNase E CLASH data (Waters et al., 2017). This pipeline tests the likelihood 150 
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that observed chimeras could have formed spuriously. Strikingly, 87% of the chimeric reads 151 

had a Benjamini-Hochberg adjusted p-value of 0.05 or less, indicating that it is highly 152 

unlikely that these chimeras were generated by random ligation of RNA molecules. A 153 

complete overview of statistically significantly enriched chimeras is provided in 154 

Supplementary File 2.  155 

 We next analysed the distribution of combinations of transcript classes found in the 156 

statistically filtered chimeric reads. Hfq CLASH identified over unique 2000 sRNA-mRNA 157 

target interactions represented by 18783 chimeras (Figure 2A; Supplementary File 3). These 158 

chimeras included sRNAs derived from 3’-UTRs and were the most frequently recovered 159 

Hfq-mediated interaction type (65.7%; Figure 2A). We suspect that this number might be 160 

higher, as 1.7% of the chimeras contained fragments of sRNAs fused to short sequences 161 

from intergenic regions (Figure 2A). Manual inspection of several of these indicated that 162 

some of the intergenic sequences were located near genes for which the UTRs were either 163 

unannotated or too short. Interestingly, 10.5% of the intermolecular chimeras contained 164 

fragments from two different mRNAs (Figure 2A). Based on analyses presented below, we 165 

speculate that many of these could be interactions between novel 3’UTR-derived sRNAs 166 

and mRNA substrates. Around 1% of the chimeras represented sRNA-tRNA interactions. In 167 

E. coli external transcribed spacers of tRNAs can base-pair with sRNAs to absorb 168 

transcriptional noise (Lalaouna et al., 2015a). In many cases the predicted base-pairing 169 

interactions between the tRNA and sRNA halves in chimeras are quite extensive 170 

(Supplementary File 2). Hence, it is possible that this group contains biologically relevant 171 

interactions. 172 

Most of the interactions, including sRNA-mRNA interactions, were identified in the 173 

transition phase (Figure 2C-D). The mRNA fragments found in chimeric reads were strongly 174 

enriched in 5’UTRs peaking near the translational start codon (Figure 2E-F), consistent with 175 

the canonical mode of translational inhibition by sRNAs (Bouvier et al., 2008). Enrichment 176 

was also found in 3’UTRs of mRNAs, although to a lesser extent compared to 5’UTRs 177 

(Figure 2E). Motif analyses revealed a distinct sequence preference in 5’UTR and 3’UTR 178 

binding sites (Figure 2G-H, Supplementary Files 8-9). The motifs enriched in the 5’UTR 179 

chimeric fragments are more consistent with Hfq binding to Shine Dalgarno-like (ARN)n 180 

sequences  (Tree et al., 2014; Supplementary File 8) and U-tracts, whereas the 3’UTR-181 

containing chimera consensus motif corresponds to poly-U transcription termination sites 182 

(Figure 2G-H and Supplementary File 9). 183 

 184 

 To further test the quality of our CLASH data, we focussed on the 24 experimentally 185 

verified sRNA-mRNA interactions recovered in our data, which we used as a “ground truth” 186 

for known interactions. Strikingly, 92% of the sRNAs in our chimeras with experimentally 187 



 7 

verified interactions were fused to the cognate mRNA fragments (Figure 2 - figure 188 

supplement 1A). Vice versa, ~87% of the mRNAs in our chimeras known to be regulated by 189 

sRNAs, were fused to cognate sRNA fragments (Figure 2 - figure supplement 1B). Except 190 

for the GcvB-sstT, all  of the experimentally verified interactions in our data had the known 191 

mRNA and sRNA seeds (Figure 2 - figure supplement 1C-D). This implies that the false 192 

negative rate in our data is very low. When we extended these analyses to all sRNAs and 193 

mRNAs identified in our data, we obtained very similar results (Figure 2 - figure supplement 194 

2A-B). Only the known MicC seed sequence was absent in MicC chimeras (Figure 2 - figure 195 

supplement 2C). 196 

 As a proxy for noise we quantified intermolecular chimeras containing rRNA 197 

sequences. Ribosomal RNA represents up to 80% of total cellular RNA and therefore often 198 

contributes significantly to noise in sequencing data. Although Hfq is known to interact with 199 

rRNA, this interaction appears to be sRNA independent (Andrade et al., 2018). Therefore, 200 

chimeras containing rRNA fragments likely represent background. In less than 4% of the 201 

chimeras were sRNAs or mRNAs fused to rRNA sequences, suggesting that the CLASH 202 

data has low background (Figure 2 - figure supplements 1-2).  203 

 204 

 We recovered around 20% of the sRNA-mRNA networks found with RIL-seq (Figure 205 

2B) and 37 experimentally verified interactions (Supplementary File 7). These results 206 

suggest that while the CLASH data contained many known interactions, the analyses were 207 

clearly not exhaustive (also see Discussion). A large number of sRNA-mRNA interactions 208 

(~1700) were uniquely found in the CLASH data (Figure 2B) and many were supported by a 209 

relatively low number of reads compared to those found both in RIL-seq and CLASH 210 

(Supplementary File 2; Figure 2 - figure supplement 3). This raises the question whether 211 

these chimeras represent bona fide interactions or were merely generated through 212 

random/stochastic ligation events. To address this, we repeated the previous bioinformatics 213 

analyses on the chimeras unique to the CLASH data. This gave almost identical results. The 214 

vast majority of the chimeras were fusions between sRNA and mRNA fragments (Figure 2 -  215 

figure supplement 4A-B) and again in almost all cases the experimentally verified sRNA 216 

seeds were recovered (Figure 2 - figure supplement 4B). Next, we analysed the chimeras 217 

unique to the CLASH data that were supported by less than 4 reads. (Figure 2 - figure 218 

supplement 5). The majority of these chimeras in this group represented sRNA-mRNA and 219 

mRNA-mRNA interactions (Figure 2 - figure supplement 5A-B) and again in almost all cases 220 

the known sRNA seed sequences were recovered (Figure 2 - figure supplement 5C). We do 221 

note the slightly higher percentage of sRNA-rRNA and mRNA-rRNA chimeras (12-13%) in 222 

this group, suggesting higher background levels (Figure 2 - figure supplement 5A-B). 223 
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However, considering again the sheer abundance of rRNA in bacterial cells, we argue that 224 

also the background in this group of low abundance chimeras is remarkably low.  225 

 To provide additional evidence that the low abundant interactions identified with 226 

CLASH represent genuine interactions and not weak or stochastic interactions, we 227 

calculated the base-pairing potential between the two halves of the chimeras. For this 228 

purpose, we used RNAduplex (Lorenz et al., 2011) to compute the hybridization potential (in 229 

kcal/mol) of the two halves in each chimera. We focussed on sRNA-mRNA chimeras as this 230 

group represented the largest number of interactions (Figure 3). These analyses revealed 231 

that the chimeras in the CLASH data, even those supported by only a few reads (Figure 3D), 232 

had a significantly higher propensity to form stable duplexes when compared to in silico 233 

shuffled chimeric reads (p-value < 6*10-16). These data imply that a large fraction of the 234 

chimeras represent genuine base-pairing interactions and not random ligation events.  235 

 If the recovered interactions indeed represent bona fide interactions, then it may be 236 

expected that the putative mRNA targets found in CLASH chimeras are enriched for 237 

sequence motifs complementary to the sRNA seed sequences. To test this, we performed 238 

motif analyses on targets of 38 sRNAs that showed at least five unique interactions with 239 

different mRNAs (Figure 4A). Some sRNAs appeared to utilize multiple and independent 240 

seed sequences to base-pair with mRNAs. In these cases, we first performed a K-means 241 

clustering analysis to group those chimeras that contained similar sRNA sequences. For 242 

each of the resulting clusters (usually 4-5), we subsequently extracted the corresponding 243 

mRNA fragments and performed motif analyses using the MEME tool suite (Bailey et al., 244 

2009). This enabled us to detect mRNA sequence motifs that are associated with specific 245 

sRNA seed sequences. The results are shown in Figure 4 - figure supplements 1-12. The 246 

motif analyses were performed for all the mRNA fragments found in sRNA-mRNA chimeras, 247 

mRNA fragments from sRNA-mRNA interactions uniquely identified by CLASH, and mRNA 248 

fragments found in sRNA-mRNA interactions supported by less than four reads. In the 249 

majority of cases we recovered previously identified mRNA sequence motifs (Faigenbaum-250 

Romm et al., 2020; Melamed et al., 2016; Waters et al., 2017). The majority of the sRNA-251 

mRNA interactions involving RyjB , ChiX, SdsR and GadY were supported by less than four 252 

reads and only found in our CLASH data. Regardless, the mRNA fragments in these 253 

chimeras were significantly enriched for sequence motifs complementary to the sRNA 254 

including known seed sequences (Figure 4B, Figure 4 -  figure supplements 1-3). We also 255 

identified novel mRNA sequence motifs for RyjB, GadY, ArcZ, CyaR and GcvB (Figure 4B, 256 

Figure 4 – figure supplements 3-6). GcvB was previously reported to recognize the 257 

consensus motif CACAaCAY in mRNAs through interactions with the GU-rich R1 seed 258 

region located at bases 66–89 (Gulliver et al., 2018; Sharma et al., 2011). Consistent with 259 

this, we found a similar motif in cluster 2 chimeras, although these less frequently recovered 260 
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in the interactions only identified by CLASH and chimeras supported by less than four reads. 261 

Our analyses also identified a well-defined sequence motif in putative mRNA targets that is 262 

highly complementary to the R3 seed, consistent with the idea that this seed is also very 263 

frequently used to regulate mRNAs (Lalaouna et al., 2019). The R3 complementary 264 

sequence motif was most highly enriched in the interactions uniquely identified in CLASH 265 

(Figure 4 - figure supplement 6B). In all but one case (CyaR motif in cluster 3; Figure 4 - 266 

figure supplement 5B) did the mRNA sequence motifs show significant complementarity to 267 

known seed sequences (Figure 4 - figure supplements 1-12). In addition, these analyses 268 

indicated that sequences in the 3’ ends of ArcZ and CyaR can also function as seeds 269 

(Figure 4 - figure supplements 4-5). Certain motifs were more frequently found in sRNA-270 

mRNA interactions uniquely identified by CLASH: The MgrR mRNA motif found in the RIL-271 

seq data was not frequently detected in our data, but the novel MgrR interactions recovered 272 

by CLASH showed a significant enrichment of G-rich motifs in mRNA fragments (Figure 4 - 273 

figure supplement 7). 274 

We also reasoned that genuine interactions should be enriched in RNA-RNA 275 

interaction data generated by alternative experimental approaches. To test this, we 276 

compared our data to recent GcvB and CyaR MS2 Affinity Purification coupled with 277 

RNA Sequencing (MAPS) datasets (Lalaouna et al., 2019, 2018) (Figure 4 - figure 278 

supplements 13A and B). The CyaR and GcvB datasets were chosen as we had a large 279 

number of different mRNA interactions with these sRNAs (> 200), which enabled us to do a 280 

statistically meaningful comparison of the datasets. Indeed, the results show that CLASH 281 

mRNA targets were significantly more highly enriched compared to the other genes in the 282 

MAPS datasets. This was even the case for those interactions supported by a relatively low 283 

number of chimeric reads, including many interactions uniquely found in our CLASH data.  284 

Collectively, these analyses strongly suggest that the predicted interactions found in 285 

our CLASH data, even those supported by a relatively low number of chimeras, are highly 286 

enriched for bona fide sRNA-mRNA interactions and less likely to be formed by 287 

random/stochastic events. 288 

 289 

What is the biological significance of these interactions? Because sRNAs can 290 

influence the stability of their mRNA targets, we asked how many of the putative mRNA 291 

targets showed changes in gene expression in existing sRNA over-expression datasets 292 

(Figure 5, Figure 5 -figure supplements 1-4). We initially analysed previously published E. 293 

coli microarray datasets (Beisel and Storz, 2011; De Lay and Gottesman, 2009; Sharma et 294 

al., 2011) similar to what was performed to validate RIL-seq interactions (Melamed et al., 295 

2016). For these analyses we also focussed our analyses on sRNAs that had a very high 296 

number of different mRNA interactions (>200) in our CLASH data (ArcZ, GcvB, CyaR and 297 
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Spot42; Figure 5 - figure supplements 1-4). While this work was under revision, RNA-seq 298 

data from several sRNA over-expression analyses in E. coli became available (Faigenbaum-299 

Romm et al., 2020), which we subsequently included in our analyses (Figure 5A). Only a 300 

subset of the predicted sRNA targets showed significant changes in gene expression. GcvB 301 

CLASH mRNA targets were most highly enriched for differentially expressed genes, 302 

although this was lower for the less abundant interactions uniquely found in the CLASH data 303 

(Figure 5A, Figure 5 – figure supplement 1). Surprisingly, although the CyaR targets were 304 

highly enriched in the MAPS data, only a few of the mRNAs were significantly differentially 305 

expressed in the CyaR over-expression data (Figure 5A, Figure 5 - figure supplement 2). 306 

The Spot42 mRNA targets predicted by CLASH showed larger (albeit modest) changes in 307 

gene expression compared to the other genes in the dataset (Figure 5 - figure supplement 308 

3). 309 

Previous work implied that those interactions that impact mRNA steady-state levels 310 

are mostly found in multiple replicate RIL-seq experiments and are generally more abundant 311 

(Faigenbaum-Romm et al., 2020). The interactions recovered by both RIL-seq and CLASH 312 

were supported by a significantly higher number of chimeras compared to those uniquely 313 

identified in the CLASH data (Figure 2 – figure supplement 3). Therefore, we asked if this 314 

group of interactions was more likely to alter mRNA levels. This was the case for the GcvB 315 

and MicA mRNA interactions but not ArcZ and CyaR interactions (Figure 5B). 316 

In conclusion, similar to what was observed for RIL-seq mRNA targets (Faigenbaum-317 

Romm et al., 2020), many of the sRNA-mRNA interactions do not appear to significantly 318 

affect mRNA steady-state levels and for some sRNAs reproducible interactions have a 319 

higher  likelihood impacting mRNA target levels (also see Discussion).  320 

 321 

Hfq CLASH predicts sRNA-sRNA interactions as a widespread layer of post-322 

transcriptional regulation. 323 

Surprisingly, we uncovered a large number of sRNA-sRNA chimeras, representing 324 

200 unique interactions (Figure 2A; 2.1%; Supplementary File 4). Many of the sRNA-sRNA 325 

interactions were uniquely found in our Hfq CLASH data (Figure 6A), were growth-stage 326 

specific and the sRNA-sRNA networks show extensive rewiring across the exponential, 327 

transition and stationary phases (Figure 6 - figure supplement 1). The sRNA-sRNA network 328 

is dominated by several abundant sRNAs that appear to act as hubs with many interacting 329 

partners: ChiX, Spot42 (spf), ArcZ and GcvB. Again, in many cases the experimentally 330 

validated sRNA seed sequences were found in the chimeric reads, for both established and 331 

novel interactions. For example, the majority of ArcZ sRNA-sRNA chimeras contained the 332 

known and well conserved seed sequence (Figure 6B, Figure 6 - figure supplement 2). 333 
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The sRNA-sRNA chimeras containing CyaR fragments were of particular interest, as 334 

the sRNA is primarily expressed during the transition from late exponential to stationary 335 

phase (De Lay and Gottesman, 2009). While 30% of the CyaR chimeras contained the 336 

known seed sequence (De Lay and Gottesman, 2009; Papenfort et al., 2008), the majority of 337 

the chimeras contained a ~25 nt fragment in the 5’ region of CyaR, which was also 338 

frequently recovered in RNase E CLASH data (Waters et al., 2017) (Figure 6B; Figure 6 - 339 

figure supplement 2), suggesting that this region represents a bona fide interaction site. 340 

Notably, the ArcZ-CyaR chimeras contained the seed sequences from both sRNAs (Figure 6 341 

- figure supplement 2) and these were detected specifically in the transition phase (Figure 342 

6A; Figure 6 - figure supplement 1).  343 

 To validate the predicted in vivo interaction between ArcZ and CyaR (Figure 7A), we 344 

used an E. coli plasmid-based assay that is routinely used to monitor sRNA-sRNA 345 

interactions and expression of their target mRNAs (Melamed et al., 2016; Miyakoshi et al., 346 

2015b; Tree et al., 2014). An advantage of this system is that each sRNA would be 347 

uncoupled from the chromosomally encoded regulatory networks (that were thought to act 348 

largely in a 1:1 stoichiometry) and to allow the specific effects of the sRNA-target RNA to be 349 

assessed (Miyakoshi et al., 2015b). Importantly, these sRNAs were induced during early 350 

exponential growth phase when the endogenous (processed) ArcZ and CyaR sRNAs are 351 

detectable at only very low levels (Figure 7B, lanes 1, 2, 5, 7). The qPCR data were 352 

subsequently normalized to the results obtained with the pJV300 control to calculate fold 353 

changes in expression levels. It has recently been shown that sRNAs can also function as 354 

“decoys” or “sponges” that can divert other sRNA away from its mRNA targets (Azam and 355 

Vanderpool, 2015; Figueroa-Bossi and Bossi, 2018; Kavita et al., 2018). This mode of 356 

“regulating the regulator” often results in cross-talk between pathways (reviewed in 357 

(Figueroa-Bossi and Bossi, 2018)). We hypothesized that the ArcZ-CyaR interaction may 358 

represent such a sponging activity. However, since it is difficult to predict directly from the 359 

CLASH data which sRNA in each pair acts as the decoy/sponge, we tested both directions. 360 

ArcZ over-expression not only decreased the expression of its mRNA targets (tpx, sdaC) by 361 

more than 50%, but also that of CyaR (Figure 7C, panel I; Figure 7D, panel I). 362 

Concomitantly, we observed a substantial increase in CyaR targets nadE and yqaE (Figure 363 

7C, panel I). CyaR over-expression reduced the level of a direct mRNA target (nadE) by 364 

~40% but it did not significantly alter the level of ArcZ or ArcZ mRNA targets (tpx and sdaC; 365 

Figure 7C, panel II). Notably, in this two-plasmid assay CyaR was not expressed at levels 366 

higher than ArcZ (Figure 7D, panel II). Therefore, it is plausible that under the tested 367 

conditions the CyaR over-expression was not sufficient to see an effect on ArcZ. We find this 368 

unlikely as over-expression of CyaR also did not significantly affect endogenous ArcZ levels, 369 

which was ~80-fold less abundant than CyaR in this experiment (Figure 7D, panel III). The 370 
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qPCR results were also confirmed by Northern blot analyses (Figure 3 - figure supplement 371 

3B, lanes 1-8), which confirmed the reduction in CyaR levels upon ArcZ over expression and 372 

demonstrated that ArcZ processing was not affected upon CyaR over-expression. These 373 

results suggest that the regulation is unidirectional, reminiscent of what has been described 374 

for Qrr3 in Vibrio harveyi (Feng et al., 2015). 375 

To provide additional support for direct interactions between these sRNAs, we 376 

generated mutations in the seed sequences of the sRNAs analysed here (Figure 7A). We 377 

found that two G to C nucleotide substitutions in ArcZ was sufficient to disrupt ArcZ 378 

regulation of CyaR (Figure 7C panel III; ArcZ 70-71 + CyaR). Unexpectedly, the wild-type 379 

ArcZ was also able to effectively suppress the CyaR seed mutant (Figure 7C panel III; ArcZ 380 

+ CyaR 38-39). We predict that the wild-type ArcZ can still form stable base-pairing 381 

interactions with the CyaR mutant. Nevertheless, regulation by the ArcZ 70-71 mutant was 382 

almost fully restored when complementary mutations were introduced in the CyaR region 383 

(Figure 7C panel III; ArcZ 70-71 + CyaR 38-39), providing additional evidence that these 384 

sRNAs base-pair in vivo. Furthermore, the data also demonstrate that it is very unlikely that 385 

the observed changes in CyaR levels were the result of Hfq redistribution due to over-386 

expression of ArcZ (Moon and Gottesman, 2011; Papenfort et al., 2009), as the ArcZ seed 387 

mutant stably accumulated (and therefore effectively binds Hfq), but did not affect CyaR 388 

levels (Figure 7C panel III).  389 

These results, together with the CLASH data, imply that ArcZ and CyaR base-pair in 390 

vivo, and that this interaction could lead to a reduction in CyaR levels but not vice versa.   391 

 392 

Hfq CLASH identifies novel sRNAs in untranslated regions  393 

Two lines of evidence from our data indicate that many other mRNAs may be 394 

harbouring sRNAs in their UTRs or be involved in base-pairing among themselves. First, 395 

around 10% of the unique intermolecular chimeras mapped to mRNA-mRNA interactions 396 

(Figure 2A). Secondly, we observed extensive binding of Hfq in 3’UTRs near transcriptional 397 

terminators (Figure 1 - figure supplement 3A-B), indicating that like in Salmonella, the E. coli 398 

3’UTRs may harbour many functional sRNAs (Chao et al., 2017). We identified 116 3’UTR-399 

containing mRNA fragments that were involved in 507 interactions (represented by a total of 400 

3149 unique chimeras). Eighteen of these 3’UTR fragments were also identified in 3’UTR-401 

mRNA chimeric reads in the RIL-seq S-chimeras data (Melamed et al., 2016) and 10 402 

appeared stabilised upon transient inactivation of RNase E performed in Salmonella (TIER-403 

seq data (Chao et al., 2017)); Figure 8A, Supplementary Files 5 and 6). For several of the 404 

putative 3’-UTR derived sRNAs, complementary sequence motifs in the mRNA fragments 405 

were identified, including motifs for the putative sRNA derived from the 3’UTR of ahpF 406 

(Figure 4C-D; Figure 8 - figure supplements 1-3). Out of the 507 3’UTR-mRNA interactions, 407 
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75 were 3’UTRs fused to 5’UTRs of mRNAs, suggesting that these may represent 3’UTR-408 

derived sRNAs that base-pair with 5’UTRs of mRNAs, a region frequently targeted by 409 

sRNAs (Supplementary Files 5 and 6). Strikingly, 233 interactions (2094 unique chimeras) 410 

contained the 3’UTR fragment of cpxP, 51 (812 chimeras) of which were also found in the 411 

RIL-Seq data (Supplementary File 6). In Salmonella cpxP harbours the CpxQ sRNA (Chao 412 

and Vogel, 2016). Our analyses greatly increased the number of potential CpxQ mRNA 413 

targets and show that the vast majority of CpxQ interactions take place during the transition 414 

and stationary phases (Supplementary File 6). Motif analyses of the putative CpxQ mRNA 415 

targets, including those identified in the interactions unique to CLASH, revealed two highly 416 

enriched G-rich sequence motifs that showed strong sequence complementarity to the 417 

known seed sequences (Figure 8 - figure supplement 2). 418 

We identified six mRNA 3’UTRs that were uncovered in all three (Hfq CLASH, RIL-419 

seq and TIER-seq) datasets (Figure 8A), suggesting they likely contain sRNAs released 420 

from 3’UTRs by RNase E processing. Northern blot analyses confirmed the presence of 421 

sRNAs in malG, ygaM and gadE 3’UTRs (Figure 8B, Figure 8 - figure supplement 4). We 422 

predict that the 3’UTR of ygaM harbours a ~100 nt sRNA (hereafter referred to as YgaN; 423 

Figure 8 - figure supplement 4) and robust Hfq cross-linking could be detected in this region 424 

(Figure 8C). 425 

The gadE 3’UTR was also detected in the RIL-seq data and experimentally 426 

confirmed and annotated as GadF (Melamed et al., 2016). Remarkably, even though we 427 

only recovered 23 unique GadF-mRNA interactions, two distinct complementary sequence 428 

motifs (CCAGGGG and CUGGUG) were identified in mRNA fragments of these chimeras, 429 

the former of which was not previously detected (Figure 8 - figure supplement 3). Again, 430 

these complementary mRNA motifs were also enriched in interactions uniquely identified by 431 

CLASH (Figure 8 - figure supplement 3). For two other 3’UTR-derived sRNAs (MicL and 432 

SdhX), we recovered 13 and 9 interactions with mRNAs, respectively (Figure 8 - figure 433 

supplement 5). MicL was previously shown to repress the synthesis of the Lpp outer 434 

membrane protein (Guo et al., 2014). Lpp mRNA fragments were most frequently found in 435 

MicL chimeras (15; Figure 8 - figure supplement 5A). The in silico folded structure of the 436 

MicL-lpp chimeras is in excellent agreement with the previously proposed interaction 437 

between MicL and lpp (Figure 8 - figure supplement 5B) (Guo et al., 2014). SdhX is involved 438 

in linking acetate metabolism with the TCA cycle (De Mets et al., 2018; Miyakoshi et al., 439 

2018). Our data predict over a dozen SdhX interactions, several of which had not been 440 

previously described (Figure 8 - figure supplement 5C). We recovered two SdhX interactions 441 

with known mRNAs targets (ackA and katG; Figure 8 - figure supplement 5D) (De Mets et 442 

al., 2018; Miyakoshi et al., 2018). Interestingly, the SdhX-ackA interaction was detected in 443 

the exponential phase, whereas the SdhX-katG interaction appeared specifically during 444 
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stationary phase. Although the number of chimeras supporting these interactions were 445 

relatively low (katG; 2 chimeras; ackA; 3 chimeras), the in silico predicted interactions 446 

between the two halves of these chimeras are fully consistent with previously published work 447 

(De Mets et al., 2018; Miyakoshi et al., 2018). These results reinforce the idea that Hfq 448 

CLASH recovers genuine interactions. 449 

To substantiate our 3’UTR-derived sRNA candidate prediction, we analysed RNA-450 

seq data from a study that used Terminator 5’-Phosphate Dependent Exonuclease (TEX) to 451 

map transcription start sites (TSS) of coding and non-coding RNAs in E. coli (Thomason et 452 

al., 2015). TEX degrades processed transcripts that have 5’ monophosphates, but not 453 

primary transcripts with 5’ triphosphates. Therefore, these data enabled us to determine 454 

whether (a) a short RNA was detected in the 3’UTR and whether these were generated by 455 

RNase-dependent processing (TEX sensitive) or originated from an independent promoter 456 

(TEX insensitive). In 47 of the 126 predicted 3’UTR-derived sRNAs in the TEX data we 457 

found strong evidence for the presence of sRNAs (Figure 8 - figure supplement 6, 458 

Supplementary File 5 and see Data and Code availability). The TEX data indicate that ygaM 459 

has (at least) two promoters, one of which is located near the 3’ end of the gene that we 460 

predict is the TSS for YgaN (Figure 8 - figure supplement 6A). Furthermore, we speculate 461 

that YgaN is processed by RNases. This is based on the observation that multiple YgaN 462 

species were detected in the Northern blot analyses (Figure 8 - figure supplement 4) and the 463 

TEX data indicate that shorter YgaN RNAs are sensitive to TEX treatment (Figure 8 - figure 464 

supplement 6A). 465 

The majority of the sRNAs we analysed are more abundant at higher cell densities 466 

(including GadF, YgaN and RybB; see Figure 8B). In sharp contrast, the sRNA derived from 467 

the 3’-UTR of the malG mRNA (MalH) was expressed very transiently and peaked at an 468 

OD600 of 1.8 (Figure 8B). We envisage that the particularly transient expression of this sRNA 469 

may be associated with a role in the adaptive responses triggered during transition from 470 

exponential to stationary phases of growth.  471 

 472 

Discussion 473 

Microorganisms need to constantly adapt their transcriptional program to meet 474 

changes in their environment, such as changes in temperature, cell density and nutrient 475 

availability. In bacteria, small RNAs (sRNAs) and their associated RNA-binding proteins play 476 

a key role in this process. By controlling translation and degradation rates of mRNAs in 477 

response to stress (Holmqvist and Wagner, 2017; Nitzan et al., 2017; Shimoni et al., 2007), 478 

they can regulate the kinetics of gene expression as well as suppress noisy signals (Beisel 479 

and Storz, 2011), enabling organisms to more efficiently adapt to environmental changes. A 480 
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major challenge for bacteria is the transition from exponential growth to stationary phase, 481 

when the most favourable nutrients become limiting. To counteract this challenge, cells need 482 

to rapidly remodel their transcriptome to efficiently metabolize alternative carbon sources. 483 

This transition is highly dynamic and involves both activation and repression of diverse 484 

metabolic pathways. However, it is unclear to what degree sRNAs contribute to this 485 

transition. The most useful piece of information would be to know what sRNAs are 486 

upregulated during this transition phase and to identify their RNA targets. This would help to 487 

uncover the regulatory networks that govern this adaptation, as well as provide a starting 488 

point for more detailed functional analyses on sRNAs predicted to play a key role in this 489 

process. For this purpose, we performed UV cross-linking, ligation and sequencing of 490 

hybrids (CLASH (Kudla et al., 2011)) to unravel the sRNA base-pairing interactions during 491 

this transition. Using Hfq as a bait we uncovered thousands of unique sRNA base-pairing 492 

interactions. We identified almost 1700 novel sRNA-mRNA interactions represented by over 493 

18000 unique chimeras, and 200 novel sRNA-sRNA interactions, compared to previously 494 

published work (Melamed et al., 2016; Waters et al., 2017). We experimentally validated 495 

several of the interactions found in our CLASH findings. We identified a functional sRNA-496 

sRNA interactions and describe a novel 3’UTR-derived sRNA that we propose plays a role in 497 

enhancing uptake of an alternative carbon source during the transition to stationary phase. 498 

 499 

Hfq CLASH 500 

Our earlier S. cerevisiae Cross-linking and cDNA analysis data (CRAC; (Granneman 501 

et al., 2009)) showed that a percentage of the cDNAs were formed by intermolecular 502 

ligations of two RNA fragments (chimeras) known to base pair in vivo (Kudla et al., 2011). 503 

These findings prompted us to develop a refined protocol to enrich for sRNA-target chimeric 504 

reads using Hfq as an obvious bait. The initial Hfq UV cross-linking data (CRAC; (Tree et al., 505 

2014)) did not yield sufficiently high numbers of chimeric reads to extract new biological 506 

insights. In line with observations from other groups (Bandyra et al., 2012; Bruce et al., 507 

2018; Morita et al., 2005), it was proposed that duplexes formed by Hfq are rapidly 508 

transferred to the RNA degradosome. This can cause an extensive reduction in the 509 

likelihood of capturing sRNA-target interactions with Hfq using CLASH (Waters et al., 2017). 510 

However, a recent study demonstrated that Hfq can be used effectively as a bait to enrich 511 

for sRNA-target duplexes under lower-stringency purification conditions suggesting that 512 

sRNA-mRNA duplexes are sufficiently stable on Hfq during purification (Melamed et al., 513 

2016). This encouraged us to further optimize the CLASH method. We made a number of 514 

changes to the protocol that enabled us to recover a large number of chimeric reads, many 515 

of which represented sRNAs base-paired to potential targets (detailed in Materials and 516 

Methods). We shortened various incubation steps to minimize RNA degradation and 517 
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performed very long and stringent washes after bead incubation steps to remove any 518 

background binding of non-specific proteins and RNAs. Crucially, we very carefully 519 

controlled the RNase digestion step that is used to trim the cross-linked RNAs prior to 520 

making cDNA libraries, ensuring the recovery of longer chimeric RNA fragments. The 521 

resulting cDNA libraries were paired-end sequenced to increase the recovery of chimeric 522 

reads with high mapping scores from the raw sequencing data. These modifications led to a 523 

substantial improvement in the recovery of chimeric reads (8.6% compared to 0.001%. 524 

0.47% were intermolecular chimeras).  525 

Both RIL-seq and Hfq CLASH have advantages and disadvantages and are highly 526 

complementary. A major strength of CLASH, however, is that the purification steps are 527 

performed under highly stringent and denaturing conditions. During the first FLAG affinity 528 

purification steps the beads are extensively washed with high salt buffers and the second 529 

Nickel affinity purification step is done under denaturing conditions (6M guanidium 530 

hydrochloride). These stringent purification steps can significantly reduce noise by strongly 531 

enriching for RNAs covalently cross-linked to the bait protein (Granneman et al., 2009). 532 

Indeed, we show that Hfq CLASH can generate high quality RNA-RNA interaction data with 533 

low background: only a few hundred chimeric reads were found in the control datasets, 534 

compared to the over 50,000 chimeras that co-purified with Hfq. The RIL-seq library 535 

preparation protocol uses an rRNA depletion step to remove contaminating ribosomal RNA. 536 

For Hfq CLASH this is not necessary, and we show that chimeras containing rRNA 537 

fragments, which presumably represent noise, are not very abundant in our data (Figure 2 - 538 

figure supplements 1, 2, 4, 5). Our library preparation protocol also includes the use of 539 

random nucleotides in adapter sequences to remove potential PCR duplicates (“collapsing”) 540 

from the data.  541 

The very stringent purification conditions used in CLASH could, in some cases, also 542 

be a disadvantage as it completely relies on UV cross-linking to isolate directly bound RNAs. 543 

In cases where the efficiencies of protein-RNA cross-linking are low (for example, in the 544 

case of proteins that only recognize double-stranded RNA), RIL-seq may be a better 545 

approach as it does not completely rely on UV cross-linking (Melamed et al., 2016). 546 

A large number of interactions were unique to both RIL-seq and Hfq CLASH 547 

datasets, which we believe can be explained by a number of technical and experimental 548 

factors. The denaturing purification conditions used with CLASH completely disrupts the Hfq 549 

hexamer ((Tree et al., 2014) and this work). Therefore, during the adapter ligation reactions 550 

the RNA ends are likely more accessible for ligation. In support of this, in the RIL-Seq data, 551 

the sRNAs are mostly found in the second half of the chimeras (Melamed et al., 2016), 552 

whilst in the Hfq CLASH data we observe sRNAs fragments with almost equal distributed in 553 

both sides (45% in left fragment and 55% in right fragment). Indeed, it was proposed that in 554 
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RIL-seq the 3’ end of the sRNA is buried in the hexamer and therefore not always accessible 555 

for ligation (Melamed et al., 2016).  556 

For the RIL-seq experiments, the authors harvested the cells at 4ºC and they 557 

resuspended them in ice-cold PBS prior to UV irradiation (Melamed et al., 2018, 2016). This 558 

procedure results in a cold-shock that can affect the sRNA-interactome as well as sRNA 559 

stability. We cross-link actively growing cells in their growth medium and we UV irradiate our 560 

cells within seconds using the Vari-X-linker we recently developed (van Nues et al., 2017). 561 

We use filtration devices to rapidly harvest our cells (less than 30 seconds) and the filtered 562 

cells are subsequently stored at -80ºC. We previously showed that filtration combined with 563 

short UV cross-linking times dramatically reduces noise introduced by the activation of the 564 

DNA damage response and significantly increased the recovery of short-lived RNA species 565 

(van Nues et al., 2017). We speculate that many of the interactions that are unique to our 566 

Hfq CLASH data represent short-lived RNA duplexes that are preferentially captured with 567 

our UV cross-linking and rapid cell filtration setup. 568 

 569 

Biological significance of the interactions 570 

One important question that needs to be addressed in the field is how many of the 571 

interactions that are recovered by high-throughput RNA-RNA interactome methodologies 572 

represent physiologically or biologically relevant base-pairing interactions. The analysis of 573 

the RIL-seq (Melamed et al., 2016) and our CLASH data showed that the predicted mRNA 574 

targets did not frequently show significant changes in gene expression upon over-expression 575 

of the sRNA. It is, of course, possible that sRNA base-pairing mostly affects mRNA 576 

translation and mRNA stability to a lesser extent. Hence, approaches other than over-577 

expression analyses may need to be included to verify the interaction networks. Ribosome 578 

profiling analyses on mutant strains should be helpful in determining whether the absence of 579 

the sRNA alters the association of mRNA targets with ribosomes (Guo et al., 2014; Wang et 580 

al., 2015), however, this is also a method not without challenges (Mohammad et al., 2019). 581 

Whilst this work was in progress, the Margalit group presented compelling evidence 582 

suggesting that many mRNA targets compete for Hfq and that the binding efficiency of Hfq 583 

to the targets primarily determines the regulatory outcome (Faigenbaum-Romm et al., 2020). 584 

Those mRNAs that were significantly affected by sRNA over-expression were also more 585 

frequently and reproducibly found in chimeras with the sRNA. This offers a plausible 586 

explanation for why we did not always observe enrichment of differentially expressed genes 587 

in putative mRNA targets recovered in a relatively low number of chimeras. Another aspect 588 

to consider is that over-expression of sRNAs will not only impact the direct targets. For 589 

example, over-expression of ArcZ in Salmonella revealed widespread changes in gene 590 

expression, presumably as a result of redistribution of Hfq over the transcriptome (Papenfort 591 
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et al., 2009). As a result, a relatively small fraction of the differentially expressed genes will 592 

be represented in the CLASH/RIL-seq data, resulting in poor p-values. 593 

One could argue that some of the interactions we present here may represent weak 594 

or stochastic interactions that do not have a biological function. For example, sRNAs can 595 

cycle on Hfq (reviewed in (Santiago-Frangos and Woodson, 2018)) and it is therefore 596 

conceivable that some of the sRNA-sRNA chimeras detected in our CLASH data happen to 597 

be two sRNAs that were in close proximity during their exchange on Hfq. Although it is not 598 

possible to quantify the number of such interactions, we would argue they are not very 599 

abundant in our data. We purified Hfq and cross-linked RNAs under very stringent and 600 

completely denaturing conditions before we do the intermolecular ligation reactions. 601 

Because our purification conditions completely disrupt the Hfq hexamer (this work and (Tree 602 

et al., 2014)), transient interactions that do not involve (significant) base-pairing would only 603 

be detected if an Hfq monomer was UV cross-linked to both sRNAs simultaneously and if 604 

the available 5’ and 3’ ends are in close proximity. Considering the poor efficiency of UV 605 

cross-linking, the likelihood of this happening is very low. Secondly, we show that our 606 

chimeras, including those that are supported by only a few reads, have a high propensity to 607 

form stable duplexes in silico (Figure 3). Finally, for many sRNAs we identified enriched 608 

sequence motifs in predicted mRNA targets that have significant sequence complementarity 609 

to sRNA seeds (Figure 4, Figure 4 - figure supplements 1-12, Figure 8 - figure supplements 610 

1-3). Thus, we conclude that with the CLASH protocol weaker or stochastic interactions are 611 

not easily recovered. While the CLASH and the RIL-seq analyses agree that for some 612 

sRNAs the more frequent interactions are more likely to affect target mRNA stability, they 613 

also highlight that low-abundance interactions have strong complementarity and base-614 

pairing potential, thus are genuine. The biological significance of these is yet to be 615 

determined, but one possibility is that many low-frequency interactions occur to confer 616 

robustness to the regulation of a few principal targets (Jost et al., 2013) and we speculate 617 

that these principal targets are condition-specific.  618 

Surprisingly, for ArcZ and CyaR, even some of the mRNA targets found in a larger 619 

number of chimeric fragments were not differentially expressed. Possible explanations 620 

include their regulation at the protein synthesis level, but not at the RNA level, or control by 621 

fine-tuning, which would result in modest or undetectable changes in transcript levels. 622 

 623 

sRNA-sRNA interactions; ArcZ regulation of CyaR 624 

One of the most striking observation of our global study was the abundance of 625 

sRNA-sRNA interactions in E. coli, many of which were growth-stage dependent. We 626 

experimentally validated the ArcZ-CyaR interaction, which involves the known seed 627 

sequence of ArcZ and the 5’end of CyaR. We demonstrate that ArcZ over-expression can 628 
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reduce CyaR steady state levels but not vice versa, implying the regulation is unidirectional. 629 

Consistent with our findings, in Salmonella, over-expression of ArcZ showed a dramatic 630 

reduction in CyaR bound to Hfq and upregulation of CyaR targets, such as nadE (Papenfort 631 

et al., 2009). This suggests that this activity is conserved between these two Gram-negative 632 

bacteria. A similar type of unidirectional regulation has also been elegantly demonstrated for 633 

the Qrr3 sRNA of Vibrio cholerae (Feng et al., 2015). The fate of these sRNA-sRNA 634 

duplexes may depend on the position of the interaction; It was shown that if the interaction 635 

with Qrr3 involves its stabilizing 5’ stem-loop structure, the sRNA will be preferentially 636 

degraded (Feng et al., 2015). Consistent with this, folding of the chimeric reads suggests 637 

that ArcZ preferentially base-pairs with the 5’ end of CyaR (Figure 6C and Figure 7A). This 638 

may destabilize secondary structures that normally help to stabilize the sRNA.  639 

The biological significance of ArcZ regulating CyaR remains unclear, however, a 640 

possible function could be to reduce noise in CyaR expression by preventing CyaR levels 641 

from overshooting during the transition phase. ArcZ and CyaR target mRNAs are associated 642 

with many different processes. Thus, these interactions are expected to connect multiple 643 

pathways. For example, ArcZ regulation of CyaR may connect adaptation to stationary 644 

phase/biofilm development (De Lay and Gottesman, 2009; Monteiro et al., 2012) to quorum 645 

sensing and cellular adherence (De Lay and Gottesman, 2009). CyaR expression is 646 

controlled by the global regulator Crp. Most of the genes controlled by Crp are involved in 647 

transport and/or catabolism of amino acids or sugar. Interestingly, ArcZ downregulates the 648 

sdaCB dicistron which encodes for proteins involved in serine uptake and metabolism 649 

(Papenfort et al., 2009). This operon has been shown to be regulated by Crp as well, 650 

suggesting that ArcZ can counteract the activity of Crp. 651 

 652 

 653 

 654 

Materials and Methods 655 

 656 

Supplementary File 11: Key Resources Table  657 

 658 

Bacterial strains and culture conditions  659 

An overview of the bacterial strains used in this study is provided in the Key 660 

Resources Table. The E. coli MG1655 and TOP10F’ strains served as parental strains. The 661 

E. coli K12 strain used for CLASH experiments, MG1655 hfq::HTF was previously reported 662 

(Tree et al., 2014). Cells were grown in Lysogeny Broth (LB) at 37°C under aerobic 663 

conditions with shaking at 200 rpm. The media were supplemented with antibiotics where 664 
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required at the following concentrations: chloramphenicol (Corning, –S, C239RI) - 25 µg/ml 665 

and kanamycin (Gibco, US,–11815-024) - 50 µg/ml. For induction of sRNA expression from 666 

plasmids, 1 mM IPTG, or 200 nM anhydrotetracycline hydrochloride (Sigma, 1035708-667 

25MG) were used.  668 

  669 

Construction of sRNA expression plasmids  670 

The plasmids used in this study are listed in the Key Resources Table. The gene 671 

fragments and primers used for cloning procedures in this work are provided in 672 

Supplementary File 10. For the sRNA over-expression constructs, the sRNA gene of interest 673 

was cloned at the transcriptional +1 site under PlacO control by amplifying the pZE12luc 674 

plasmid (Expressys)  by inverse PCR using Q5 DNA Polymerase (NEB). The sRNA genes 675 

and seed mutants were synthesized as ultramers (IDT; Supplementary File 10) which served 676 

as the forward primers. The reverse primer (oligo pZE12_5P_rev, Supplementary File 10) 677 

bears a monophosphorylated 5’ end to allow blunt-end self-ligation. The PCR reaction was 678 

digested with 10U DpnI (NEB) for 1h at 37C and purified by ethanol precipitation. The linear 679 

PCR product was circularized by self-ligation,  and transformed in E. coli TOP10F’ 680 

competent cells. Positive transformants were screened by Sanger sequencing (Edinburgh 681 

Genomics, Edinburgh, UK). Small RNA over-expression constructs derived from the 682 

pZA21MCS (Expressys) were generated identically, using the indicated ultramers in 683 

Supplementary File 10 as forward primers and oligo pZA21MCS_5P_rev as the reverse 684 

primer.  685 

 686 

 687 

Hfq UV Cross-linking, Ligation and Analysis of Hybrids (Hfq-CLASH) 688 

CLASH was performed essentially as described (Waters et al., 2017), with a number 689 

of modifications including changes in incubation steps, cDNA library preparation, reaction 690 

volumes and UV cross-linking. E. coli expressing the chromosomal Hfq-HTF were grown 691 

overnight in LB at 37°C with shaking (200 rpm), diluted to starter OD600 
0.05 in fresh LB, and 692 

re-grown with shaking at 37°C in 750 ml LB. A volume of culture equivalent to 80 OD600 
per 693 

ml was removed at the following cell-densities (OD600): 0.4, 0.8, 1.2, 1.8, 2.4, 3.0 and 4.0, 694 

and immediately subjected to UV (254 nm) irradiation for 22 seconds (~500 mJ/cm2) in the 695 

Vari-X-linker (van Nues et al., 2017) (https://www.vari-x-link.com). Cells were harvested 696 

using a rapid filtration device (van Nues et al., 2017) (https://www.vari-x-link.com) onto 0.45 697 

μM nitrocellulose filters (Sigma, UK, HAWP14250) and flash-frozen on the membrane in 698 

liquid nitrogen. Membranes were washed with ~15 ml ice-cold phosphate-buffered saline 699 

(PBS), and cells were harvested by centrifugation. Cell pellets were lysed by bead-beating in 700 

1 volume per weight TN150 buffer (50mM Tris pH 8.0, 150 mM NaCl, 0.1% NP-40, 5 mM β-701 

https://www.vari-x-link.com/
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mercaptoethanol) in the presence of protease inhibitors (Roche, A32965), and 3 volumes 702 

0.1 mm Zirconia beads (Thistle Scientific, 11079101z), by performing 5 cycles of 1 minute 703 

vortexing followed by 1-minute incubation on ice. One additional volume of TN150 buffer 704 

was added. To reduce the viscosity of the lysate and remove contaminating DNA the lysate 705 

was incubated with RQ1 DNase I (10U/ml Promega, M6101) for 30 minutes on ice. Two-706 

additional volumes of TN150 were added and mixed with the lysates by vortexing. The 707 

lysates were centrifuged for 20 minutes at 4000 rpm at 4C and subsequently clarified by a 708 

second centrifugation step at 13.4 krpm, for 20 min at 4C. Purification of the UV cross-709 

linked Hfq-HTF-RNA complexes and cDNA library preparation was performed as described 710 

(Granneman et al., 2009). Cell lysates were incubated with 50 μl of pre-equilibrated M2 anti-711 

FLAG beads (Sigma, M8823-5ML) for 1-2 hours at 4°C. The anti-FLAG beads were washed 712 

three times 10 minutes with 2 ml TN1000 (50 mM Tris pH 7.5, 0.1% NP-40, 1M NaCl) and 713 

three times 10 minutes with TN150 without protease inhibitors (50 mM Tris pH 7.5, 0.1% 714 

NP-40, 150mM NaCl). For TEV cleavage, the beads were resuspended in 250 μl of TN150 715 

buffer (without protease inhibitors) and incubated with home-made GST-TEV protease at 716 

room temperature for 1.5 hours. The TEV eluates were then incubated with a fresh 1:100 717 

dilution preparation of RNaceIt (RNase A and T1 mixture; Agilent, 400720) for exactly 5 718 

minutes at 37ºC, after which they were mixed with 0.4g GuHCl (6M, Sigma, G3272-100G), 719 

NaCl (300mM), and Imidazole (10mM, I202-25G). Note this needs to be carefully optimized 720 

to obtain high-quality cDNA libraries. The samples were then transferred to 50 μl Nickel-NTA 721 

agarose beads (Qiagen, 30210), equilibrated with wash buffer 1 (6 M GuHCl, 0.1% NP-40, 722 

300 mM NaCl, 50 mM Tris pH 7.8, 10 mM Imidazole, 5 mM beta-mercaptoethanol). Binding 723 

was performed at 4ºC overnight with rotation. The following day, the beads were transferred 724 

to Pierce SnapCap spin columns (Thermo Fisher, 69725), washed 3 times with wash buffer 725 

1 and 3 times with 1xPNK buffer (10 mM MgCl2, 50mM Tris pH 7.8, 0.1% NP-40, 5 mM beta-726 

mercaptoethanol). The washes were followed by on-column TSAP incubation 727 

(Thermosensitive alkaline phosphatase, Promega, M9910) treatment for 1h at 37C with 8 U 728 

of phosphatase in 60 μl of 1xPNK, in the presence of 80U RNasin (Promega, N2115). The 729 

beads were washed once with 500 μl wash buffer 1 and three times with 500 μl 1xPNK 730 

buffer. To add 3’-linkers (App-PE – Key Resources Table), the Nickel-NTA beads were 731 

incubated in 80 μl 3’-linker ligation mix with (1 X PNK buffer, 1 µM 3’-adapter, 10% 732 

PEG8000, 30U Truncated T4 RNA ligase 2 K227Q (NEB, M0351L), 60U RNasin). The 733 

samples were incubated for 4 hours at 25C. The 5’ ends of bound RNAs were radiolabelled 734 

with 30U T4 PNK (NEB, M0201L) and 3μl 32P-γATP (1.1µCi; Perkin Elmer, NEG502Z-500) 735 

in 1xPNK buffer for 40 min at 37C, after which ATP (Roche, 11140965001) was added to a 736 

final concentration of 1mM, and the incubation prolonged for another 20 min to complete 5’ 737 
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end phosphorylation. The resin was washed three times with 500 μl wash buffer 1 and three 738 

times with equal volume of 1xPNK buffer. For on-bead 5’-linker ligation, the beads were 739 

incubated 16h at 16C in 1xPNK buffer with 40U T4 RNA ligase I (NEB, M0204L), and 1 μl 740 

100 μM L5 adapter (Key Resources Table), in the presence of 1mM AtP and 60U RNasin. 741 

The Nickel-NTA beads were washed three times with wash buffer 1 and three times with 742 

buffer 2 (50 mM Tris–HCl pH 7.8, 50 mM NaCl, 10 mM imidazole, 0.1% NP-40, 5 mM β-743 

mercaptoethanol). The protein-RNA complexes were eluted in two steps in new tubes with 744 

200 μl of elution buffer (wash buffer 2 with 250 mM imidazole). The protein-RNA complexes 745 

were precipitated on ice by adding TCA (T0699-100ML) to a final concentration of 20%, 746 

followed by a 20-minute centrifugation at 4C at 13.4 krpm. Pellets were washed with 800 μl 747 

acetone, and air dried for a few minutes in the hood. The protein pellet was resuspended 748 

and incubated at 65C in 20 μl 1x NuPage loading buffer (Thermo Scientific, NP0007), 749 

resolved on 4–12% NuPAGE gels (Thermo Scientific, NP0323PK2) and visualised by 750 

autoradiography. The cross-linked proteins-RNA were cut directly from the gel and 751 

incubated with 160 μg of Proteinase K (Roche, 3115801001) in 600 μl wash buffer 2 752 

supplemented with 1% SDS and 5 mM EDTA at 55C for 2-3 hours with mixing. The RNA 753 

was subsequently extracted by phenol-chloroform extraction and ethanol precipitated. The 754 

RNA pellet was directly resuspended in RT buffer and was transcribed in a single reaction 755 

with the SuperScript IV system (Invitrogen, 18090010) according to manufacturer’s 756 

instructions using the PE_reverse oligo as primer. The cDNA was purified with the DNA 757 

Clean and Concentrator 5 kit (Zymo Research) and eluted in 11 μl DEPC water. Half of the 758 

cDNA (5 μl) was amplified by PCR using Pfu Polymerase (Promega, M7745) with the cycling 759 

conditions (95°C for 2 min; 20-24 cycles: 95°C for 20s, 52°C for 30s and 72°C for 1 min; final 760 

extension of 72°C for 5 min). The PCR primers are listed in the Key Resources Table. PCR 761 

products were treated with 40U Exonuclease 1 (NEB, M0293L) for 1 h at 37C to remove 762 

free oligonucleotide and purified by ethanol precipitation/ or the DNA Clean and 763 

Concentrator 5 kit (Zymo Research, D4003T). Libraries were resolved on a 2% MetaPhor 764 

agarose (Lonza, LZ50181) gel and 175-300bp fragments were gel-extracted with the 765 

MinElute kit (Qiagen, 28004) according to manufacturer’s instructions. All libraries were 766 

quantified on a 2100 Bionalyzer using the High-Sensitivity DNA assay and a Qubit 4 767 

(Thermo Scientific, Q33226). Individual libraries were pooled based on concentration and 768 

barcode sequence identity. Paired-end sequencing (75 bp) was performed by Edinburgh 769 

Genomics on an Illumina HiSeq 4000 platform.  770 

 771 

RNA-seq 772 

E. coli MG1655 was cultured, UV-irradiated and harvested as described for the 773 
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CLASH procedure. Total RNA was extracted using the Guanidium thiocyanate phenol 774 

method. RNA integrity was assessed with the Prokaryote Total RNA Nano assay on a 2100 775 

Bioanalyzer (Agilent, G2939BA). Sequencing libraries from two biological replicates were 776 

prepared by NovoGene using the TruSeq library preparation protocol and 150bp paired-end 777 

sequencing was performed on an Illumina NovaSeq 6000 system. This yielded ~7-8 million 778 

paired-end reads per sample.  779 

 780 

Small RNA over-expression studies 781 

 Individual TOP10F’ clones carrying pZA21 and pZE12-derived sRNA constructs and 782 

control plasmids combinations (Key Resources Table) were cultured to OD600 0.1 and 783 

expression of sRNAs was induced with IPTG and anhydrotetracycline hydrochloride (Sigma, 784 

I6758-1G and 1035708-25MG) for one hour. Cells were collected by centrifugation for 30 785 

seconds at 14000 rpm, flash-frozen in liquid nitrogen and total RNA was isolated as above. 786 

Gene expression was quantified by RT-qPCR (see below) using 10 ng total RNA as 787 

template, and expressed as fold change relative to the reference sample containing pJV300 788 

(Sittka et al., 2007) or empty pZA21.  789 

 790 

RT-qPCR  791 

Total RNA (10 µg) was treated with 2 U of Turbo DNase (Thermo Scientific, AM2238) 792 

for 1 hour at 37C in a 10 μl reaction in the presence of 2 U superaseIn RNase inhibitor 793 

(Thermo Scientific, AM2694). The RNA was purified with RNAClean XP beads (Beckman 794 

Coulter, A63987). Quantitative PCR was performed on 10 ng of DNAse I-treated total RNA 795 

using the Luna Universal One-Step RT-qPCR Kit (NEB, E3005E) according to 796 

manufacturer’s instructions. The qPCRs were run on a LightCycler 480 (Roche), and the 797 

specificity of the product was assessed by generating melt curves, as follows: 65C-60s, 798 

95C (0.11 ramp rate with 5 acquisitions per C, continuous). The data analyses were 799 

performed with the IDEAS2.0 software, at default settings: Absolute Quantification/Fit Points 800 

for Cp determination and Melt Curve Genotyping. The RT-qPCR for all samples was 801 

performed in technical triplicate. Outliers from the samples with technical triplicate standard 802 

deviations of Cp > 0.3 were discarded from the analyses. To calculate the fold-change 803 

relative to the control, the 2-ddCp method was employed, using 5S rRNA (rrfD) as the 804 

reference gene. Experiments were performed for three biological replicates, and the mean 805 

fold-change and standard error of the mean were computed. Unless otherwise stated, 806 

significance of the fold-change difference compared to the reference sample control (for 807 

which fold-change =1 by definition) was tested with a one-sample t-test.  808 

 809 
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Northern Blot analysis  810 

Total RNA was extracted from cell lysates by GTC-Phenol extraction. 10 μg total 811 

RNA was separated on an 8% polyacrylamide TBE-Urea gel and transferred to a nylon 812 

membrane (HyBond N+, GEHealthcare, RPN1210B)  by electroblotting for four hours at 50 813 

V. Membranes were pre-hybridised in 10 ml of UltraHyb Oligo Hyb (Thermo Scientific, 814 

AM8663) for one hour and probed with 32P-labeled DNA oligo at 42C for 12-18 hours in a 815 

hybridization oven. The sequences of the probes used for Northern blot detection are 816 

detailed in Supplementary File 10. Membranes were washed twice with 2xSSC + 0.5% SDS 817 

solution for 10 minutes and visualized using a Phosphor imaging screen and FujiFilm FLA-818 

5100 Scanner (IP-S mode). For detection of highly abundant species (5S rRNA) 819 

autoradiography was used for exposure.  820 

 821 

Western blot analyses 822 

 E. coli MG1655 Hfq::htf lysates using strains cultured, cross-linked, harvested and 823 

lysed in identical conditions as the CLASH experiments containing 40 µg protein were 824 

resolved on PAGE gels and transferred to a nitrocellulose membrane. The membranes were 825 

blocked for one hour in blocking solution (5% non- fat milk in PBST (1X phosphate saline 826 

buffer, 0.1% Tween-20). To detect Hfq-HTF protein, the membrane was probed overnight at 827 

4C with the Rabbit anti-TAP polyclonal primary antibody (Thermo Fisher, 1:5000 dilution in 828 

blocking solution), which recognizes an epitope at the region between the TEV-cleavage site 829 

and His6. For the loading control we used a rabbit polyclonal to GroEL primary antibody 830 

(Abcam, 1:150000 dilution, ab82592), for 2 hours at room temperature. After 3x10 min PBST 831 

washes, the membranes were blotted for one hour with a Goat anti-rabbit IgG H&L (IRDye 832 

800) secondary antibody (Abcam, ab216773, 1:10000 in blocking solution) at room 833 

temperature. Finally, after three 10-minute PBST washes, the blot was rinsed in PBS, and 834 

the proteins were visualised with a LI-COR (Odyssey CLx) using the 800 nm channel and 835 

scan intensity 4. Image acquisition and quantifications were performed with the Image 836 

Studio Software.  837 

 838 

Computational analysis 839 

Pre-processing of the raw sequencing data.  840 

Raw sequencing reads in fastq files were processed using a pipeline developed by 841 

Sander Granneman, which uses tools from the pyCRAC package (Webb et al., 2014). The 842 

entire pipeline is available at https://bitbucket.org/sgrann/). The CRAC_pipeline_PE.py 843 

pipeline first demultiplexes the data using pyBarcodeFilter.py and the in-read barcode 844 

sequences found in the L5 5’ adapters. Flexbar then trims the reads to remove 3’-adapter 845 
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sequences and poor-quality nucleotides (Phred score <23). Using the random nucleotide 846 

information present in the L5 5’ adaptor sequences, the reads are then collapsed to remove 847 

potential PCR duplicates. The reads were then mapped to the E. coli MG1655 genome 848 

using Novoalign (www.novocraft.com). To determine to which genes the reads mapped to, 849 

we generated an annotation file in the Gene Transfer Format (GTF). This file contains the 850 

start and end positions of each gene on the chromosome as well as what genomic features 851 

(i.e. sRNA, protein- coding, tRNA) it belongs to. To generate this file, we used the 852 

Rockhopper software (Tjaden, 2015) on E. coli  rRNA-depleted total RNA-seq data 853 

(generated by Christel Sirocchi), a minimal GTF file obtained from ENSEMBL (without UTR 854 

information). The resulting GTF file contained information not only on the coding sequences, 855 

but also complete 5’ and 3’ UTR coordinates. We then used pyReadCounters.py with 856 

Novoalign output files as input and the GTF annotation file to count the total number of 857 

unique cDNAs that mapped to each gene.  858 

 859 

Normalization steps. 860 

To normalize the read count data generated with pyReadCounters.py and to correct 861 

for differences in library depth between time-points, we calculated Transcripts Per Million 862 

reads (TPM) for each gene. Briefly, for each time-point the raw counts for each gene was 863 

first divided by the gene length and then divided by the sum of all the values for the genes in 864 

that time-point to normalize for differences in library depth. The TPM values for each OD600 
865 

studied were then log2-normalized.  866 

 867 

Hfq-binding coverage plots. 868 

For the analysis of the Hfq binding sites the pyCRAC package (Webb et al., 2014) 869 

was used (versions. 1.3.2-1.4.3). The pyBinCollector tool was used to generate Hfq cross-870 

linking distribution plots over genomic features. First, PyCalculateFDRs.py was used to 871 

identify the significantly enriched Hfq-binding peaks (minimum 10 reads, minimum 20 872 

nucleotide intervals). Next, pyBinCollector was used to normalize gene lengths by dividing 873 

their sequences into 100 bins and calculate nucleotide densities for each bin. To generate 874 

the distribution profile for all genes individually, we normalized the total number of read 875 

clusters (assemblies of overlapping cDNA sequences) covering each nucleotide position by 876 

the total number of clusters that cover the gene. Motif searches were performed with 877 

pyMotif.py using the significantly enriched Hfq-binding peaks (FDR intervals). The 4-8 878 

nucleotide k-mers with Z-scores above the indicated threshold were used for making the 879 

motif logo with the k-mer probability logo tool (Wu and Bartel, 2017) with the -ranked option 880 

(http://kplogo.wi.mit.edu/). 881 

 882 

http://kplogo.wi.mit.edu/
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Analysis of chimeric reads. 883 

Chimeric reads were identified using the hyb package using default settings (Travis 884 

et al., 2013) and further analysed using the pyCRAC package (Webb et al., 2014). To apply 885 

this single-end specific pipeline to our paired-end sequencing data, we joined forward and 886 

reverse reads using FLASH (https://github.com/dstreett/FLASH2) (Magoč and Salzberg, 887 

2011), which merges overlapping paired reads into a single read. Paired reads that were not 888 

considered overlapping were subsequently concatenated into a single sequence and again 889 

filtered for overlapping reads that were missed by FLASH. These were then analysed using 890 

hyb. The -anti option for the hyb pipeline was used to be able to use a genomic E. coli hyb 891 

database, rather than a transcript database. Uniquely annotated hybrids (.ua.hyb) were used 892 

in subsequent analyses. To visualise the hybrids in the genome browser, the .ua.hyb output 893 

files were converted to the GTF format. To generate distribution plots for the genes to which 894 

the chimeric reads mapped, the parts of the chimeras were clustered with 895 

pyClusterReads.py and BEDtools (Quinlan and Hall, 2010) (intersectBed) was used to 896 

remove clusters that map to multiple regions. To produce the coverage plots with 897 

pyBinCollector, each cluster was counted only once, and the number of reads belonging to 898 

each cluster was ignored. 899 

 900 

Statistical filtering of the data. 901 

 The uniquely annotated chimeras from the merged CLASH experiments were 902 

statistically scored using available pipelines (Waters et al., 2017). Only chimeras with an 903 

Benjamini-Hochberg adjusted p-value lower than 0.05 were considered and referred to as 904 

statistically filtered chimeras.  905 

 906 

Predicted folding energy analyses. 907 

 Cumulative distributions of minimum folding energy were generated using the 908 

minimum folding energies predicted with RNADuplex (Lorenz et al., 2011) for all statistically 909 

filtered sRNA-mRNA chimeras. To generate the data for the shuffled chimeras, the 910 

fragments were randomly shuffled over the same gene, or over genes belonging to the same 911 

class of genes (e.g sRNAs or mRNAs), respectively. Significance was tested with 912 

Kolmgorov-Smirnov test. 913 

 914 

Motif analyses for sRNA targets. 915 

For each sRNA with at least five different putative targets, we clustered those 916 

chimeras based on the similarity of sRNA sequences using K-means clustering. The 917 

clustering step was skipped for those sRNAs for which almost all chimeric reads overlapped 918 

the same region.  The sequences of the fused mRNA fragments in each cluster were 919 
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extracted and motif searches using MEME (Bailey et al., 2009). To calculate 920 

complementarity between the identified motifs in putative mRNA targets and the sRNA we 921 

used MAST (Bailey et al., 2009). Only motifs that had a MAST p-value <= 0.001 were 922 

considered. 923 

 924 

Microarray analyses. 925 

ArcZ, Spot42 and GcvB microarray data were processed by GEO2R using the limma 926 

package (Ritchie et al., 2015). The accession numbers for these datasets are GSE17771, 927 

GSE24875 and GSE26573. The processed CyaR data were obtained from the 928 

Supplementary data provided in the paper describing the CyaR over-expression in E. coli 929 

(De Lay and Gottesman, 2009). Cumulative distribution plots were generated using the T-930 

statistics calculated by the limma package. Average expression levels were calculated by 931 

averaging the expression of genes in the parental and over-expression strain. 932 

 933 

sRNA density plots. 934 

To visualize the nucleotide read density of sRNA-target pairs for a given sRNA, the 935 

hit counts at each nucleotide position for all statistically filtered chimeras were summed. The 936 

count data was log2-normalized (actually log2(Chimera count +1) to avoid NaN for nucleotide 937 

positions with 0 hits when log-transforming the data). 938 

To make distributions of the chimeric reads around known sRNA and mRNA seeds, 939 

we manually retrieved the experimentally validated sRNA and mRNA seed sequences from 940 

sRNATarbase 3.0 (Wang et al., 2015) and literature. We converted the FASTA sequences to 941 

the genomic coordinates  of our reference genome. Next, we normalized the length of all 942 

sequences to eight nucleotides with pyNormalizeIntervalLengths.py, then used the 943 

pyBinCollector tool to calculate the overlap of the intervals corresponding to statistically 944 

filtered chimeric reads with the seed sequence interval of each sRNA and sRNA-mRNA 945 

interaction.  946 

 947 

sRNA-sRNA network visualization. 948 

Only the sRNA-sRNA chimeric reads representing statistically filtered chimeras in the 949 

merged CLASH dataset were considered. For each such interaction, chimera counts 950 

corresponding in either orientation were summed, log2-transformed and visualized with the 951 

igraph Python package.   952 

 953 

Data and Code availability. 954 

The next generation sequencing data have been deposited on the NCBI Gene 955 

Expression Omnibus (GEO) with accession number GSE123050. The python pyCRAC 956 
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(Webb et al., 2014), kinetic-CRAC and GenomeBrowser software packages used for 957 

analysing the data are available from https://bitbucket.org/sgrann (pyCRAC up to version 958 

1.4.3), https://git.ecdf.ed.ac.uk/sgrannem/ and pypi (https://pypi.org/user/g_ronimo/). The 959 

hyb pipeline for identifying chimeric reads is available from https://github.com/gkudla/hyb. 960 

The scripts for statistical analysis of hyb data is available from 961 

https://bitbucket.org/jaitree/hyb_stats/. The FLASH algorithm for merging paired reads is 962 

available from https://github.com/dstreett/FLASH2. Bedgraph and Gene Transfer Format 963 

(GTF) generated from the analysis of the Hfq CLASH, RNA-seq and TEX RNA-seq data 964 

(Thomason et al., 2015) are available from the Granneman lab DataShare repository 965 

(https://datashare.is.ed.ac.uk/handle/10283/2915). 966 
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Figure Legends 990 

Figure 1. Hfq CLASH experiments at different growth phases in E. coli.  991 

(A) Overview of the critical experimental steps for obtaining the Hfq CLASH data. E. coli 992 

cells expressing an HTF (His6-TEV-3xFLAG)-tagged Hfq (Tree et al., 2014) were grown in 993 

LB and an equal number of cells were harvested at different optical densities (OD600). Hfq 994 

binds to sRNA-RNA duplexes, and RNA ends that are in close proximity are ligated together. 995 

After removal of the protein with Proteinase K, cDNA libraries are prepared and sequenced. 996 

The single reads can be used to map Hfq-RNA interactions, whereas the chimeric reads can 997 

be traced to sRNA-target interactions. (B) A growth curve of the cultures used for the Hfq 998 

CLASH experiments, with OD600 at which cells were cross-linked indicated by circles, and 999 

each growth stage is indicated above the plot. The results show the mean and standard 1000 

deviations of two biological replicates. Source data are provided as a Source Data file. (C) 1001 

Cultures at the same OD600 cross-linked and harvested by filtration were analysed by Hfq 1002 

CLASH, RNA-seq and Western blotting to detect Hfq. All the experiments were done in 1003 

duplicate. 1004 

 1005 

Figure 2. Hfq CLASH detects RNA-RNA interactions in E. coli.  1006 

(A) Intermolecular transcript combinations found in chimeras captured by Hfq CLASH. 1007 

Combination count of all uniquely annotated hybrids on genomic features. *tRNA-tRNA and 1008 

rRNA-rRNA chimeras originating from different genomic regions were removed because 1009 

tRNA and rRNA gene copies are very similar and therefore we could not unambiguously 1010 

determine if these represented intermolecular or intramolecular interactions. (B) Venn 1011 

diagram comparing the sRNA-mRNA interactions found in RIL-seq S-chimera data and Hfq 1012 

CLASH data. (C) Venn diagram showing the intersection between interactions from 1013 

statistically filtered CLASH data from two biological replicates, recovered at three main 1014 

growth stages: exponential (OD600 0.4 and 0.8), transition (OD600 1.2, 1.8, 2.4) and early 1015 

stationary (OD600 3.0 and 4.0). (D) Same as in (C) but for sRNA-mRNA interactions. (E) 1016 

Distribution of mRNA fragments in sRNA-mRNA chimeras over all E. coli protein-coding 1017 

genes. Each gene was divided in 100 bins and the number of mRNA fragments that mapped 1018 

to each bin (hit density; y-axis) was calculated. (F) Distribution of the mRNA fragments of 1019 

sRNA-mRNA chimeras around the translational start codon (AUG). The pink line indicates 1020 

the position of the start codon (G-H) Enriched motifs in mRNA fragments of chimeras that 1021 

uniquely overlap 5’UTRs and 3’UTRs; the logos were drawn using the top 20 K-mers. 1022 

 1023 

Figure 3. In silico folding of sRNA-mRNA chimeras shows Hfq CLASH sRNA-mRNA 1024 

interactions are significantly more structured than randomly matched pairs. 1025 
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(A) Cumulative distribution of the predicted folding energy (ΔG) values between sRNA and 1026 

matching mRNA found in all statistically filtered sRNA-mRNA interactions. Chimera folding 1027 

energies were calculated using RNADuplex (Lorenz et al., 2011) and their distribution was 1028 

compared to the control distributions of chimeric reads in which the fragments were 1029 

randomly shuffled over the same gene, or over genes belonging to the same class of genes 1030 

(e.g sRNAs or mRNAs), respectively. Significance was tested with Kolmgorov-Smirnov test. 1031 

(B) As in (A) but now for the chimeras unique to the CLASH data. (C) As in (A) but now for 1032 

chimeras that are supported by less than 4 reads. (D) as in (A) but now for chimeras unique 1033 

to the CLASH data and supported by less than 4 reads. 1034 

 1035 

Figure 4. Total number of interactions for sRNAs and in how many cases enriched 1036 

sequence motifs were found.  1037 

(A and B) The heatmaps show the number of different mRNA interactions identified with 1038 

independently transcribed sRNAs (A) or (putative) 3’UTR-derived sRNAs (B). Only sRNA for 1039 

which we recovered at least 5 different interactions with mRNAs (highlighted in black) were 1040 

further analysed for enriched motifs in the putative mRNA targets. The black-and-white 1041 

heatmaps indicate if enriched motifs were identified in predicted mRNA targets of sRNAs 1042 

(black is Yes and white is No). Motif analysis was performed using the MEME suite (Bailey 1043 

et al., 2009). The number of target sequences that contained the common motif and the E-1044 

value of MEME is also shown. The identified motifs in the mRNA targets also show 1045 

sequence complementarity to the sRNA sequence. The Motif Alignment Search Tool 1046 

(MAST) was used to determine the degree of complementarity between the identified motifs 1047 

in putative mRNA targets and the putative sRNA. An sRNA was considered to have an 1048 

enriched motif if motif identified by MEME had an E-value <= 0.1 and/or the MAST p-value 1049 

of the motif, which indicates the overall match between the identified motifs and the sRNA 1050 

sequence (Bailey et al., 2009), was <= 0.001. (C-D) Motif analyses of mRNA sequences 1051 

found in RyjB sRNA-mRNA and ahpF-3’UTR-mRNA interactions. All of the RyjB and ahpF-1052 

3’UTR interactions with mRNAs we found were uniquely detected in our CLASH data. 1053 

 1054 

Figure 5. A subset of putative mRNA targets identified by CLASH show gene 1055 

expression changes upon over-expression of the sRNA. 1056 

The Venn diagrams show how many of the predicted mRNA targets were also found to be 1057 

differentially expressed in sRNA over-expression RNA-seq data (Faigenbaum-Romm et al., 1058 

2020). The GcvB and MicA CLASH mRNA targets are highly enriched for genes that are 1059 

differentially expressed in the over-expression RNA-seq data (p-value < 0.001). The 1060 

statistical significance was calculated using a hypergeometric test. Interactions that are 1061 

generally presented by a relatively low number of reads (‘CLASH unique’ and ‘less four 1062 
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reads’ categories) are not significantly enriched for differentially expressed genes. (B) The 1063 

mRNA targets found in GcvB and MicA interactions found in both RIL-seq and CLASH show 1064 

significantly higher fold-changes in the over-expression data compared to the interactions 1065 

uniquely found in the CLASH data. The violin plots show the distribution of fold-changes in 1066 

mRNA target expression (y-axis) in the over-expression RNA-seq data for chimeras 1067 

supported by more than three reads and those supported by less than four reads (x-axis). 1068 

Statistical significance between the two groups was calculated using a Mann-Whitney U test. 1069 

 1070 

Figure 6. sRNA-RNA interactions identified by CLASH 1071 

(A) Hfq CLASH uncovers sRNA-sRNA interaction networks: comparison between 1072 

statistically filtered sRNA-sRNA interactions in the Hfq CLASH data, RIL-seq S-chimeras 1073 

(Melamed et al., 2016) (log and stationary) and RNase E CLASH (Waters et al., 2017). Only 1074 

core genome sRNAs were considered. (B-C) Heatmaps showing the read density 1075 

(log2(chimera count+1)) of chimeric fragments mapping to ArcZ (B) and CyaR (C). The 1076 

location of the known sRNA seed sequences as well as the predicted new CyaR seed is 1077 

indicated above the heatmap.  1078 

 1079 

Figure 7. ArcZ can influence CyaR levels. 1080 

(A) Base-pairing interactions predicted from the ArcZ-CyaR chimeras using RNACofold. The 1081 

nucleotide substitutions for experimental validation of direct base-pairing are shown as red 1082 

or green residues. (B) Northern blot analysis of ArcZ and CyaR. The cells containing both 1083 

the empty pZA and pJV300 plasmids (lanes 1, 5, 9) do not express ArcZ and CyaR at 1084 

detectable levels. (C) Validation of ArcZ-CyaR interaction by over-expression analyses. 1085 

ArcZ, CyaR were overexpressed and the levels of their targets were monitored by RT-qPCR. 1086 

The tpx and sdaC mRNAs are ArcZ mRNA targets. The nadE and yqaE mRNAs are CyaR 1087 

targets. The dashed horizontal line indicates the level in the control plasmid (pJV300) that 1088 

expresses a ~50 nt randomly generated RNA sequence. I ArcZ and CyaR directly interact. 1089 

Panel III: The sRNAs and mutants as in were ectopically co-expressed in E. coli and CyaR 1090 

and CyaR 38-39 levels were quantified by RT-qPCR. Experiments were performed in 1091 

biological and technical triplicates; Error bars indicate the standard error of the mean (SEM) 1092 

of the three biological replicates. (D) ArcZ and CyaR were overexpressed from a plasmid-1093 

borne IPTG inducible promoter (pZE-ArcZ and pZE-CyaR) and the data were compared to 1094 

data from cells carrying  plasmid pJV300. The co-expressed candidate target sRNAs 1095 

(expressed from pZA-derived backbone) were induced with anhydrotetracycline 1096 

hydrochloride (panels I and II). The bars indicate the mean fold-change in expression 1097 

relative to the level of 5S rRNA (rrfD) in cells with the indicated vector. In panel III 1098 

endogenous ArcZ levels were measured upon over-expression of CyaR. Error bars indicate 1099 
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the standard error of the mean from three biological replicates and three technical replicates 1100 

per experiment. Source data are provided as a Source Data file. 1101 

 1102 

Figure 8. Hfq CLASH uncovers novel 3’UTR-derived sRNAs 1103 

(A) Genes of which the 3’UTRs were found fused to mRNAs, were selected from the 1104 

statistically filtered CLASH data and RIL-seq S-chimera data. The RIL-seq RNA-RNA 1105 

interaction set (Melamed et al., 2016) S-chimeras for Log and Stationary phases of growth 1106 

was filtered for the 3’UTR/EST3UTR annotations on either orientation of the mRNA-mRNA 1107 

pairs. Both were intersected with the set of mRNAs that were predicted by TIER-seq studies 1108 

(Chao et al., 2017) to harbour sRNAs that get released from 3’UTRs by RNase E 1109 

processing. Known (CpxQ, SdhX, MicL, GadF, glnA-3’UTR and SroC) and novel 3’UTR 1110 

derived sRNAs (MalH, flgL 3’UTR, ahpF-3’UTR and YgaN) are indicated. See 1111 

Supplementary File 5 for the detailed comparison. (B) MalH is transiently expressed during 1112 

the transition from exponential to stationary phase. RybB was probed as a sRNA positive 1113 

control and 5S rRNA as the loading control. See Figure 8 - figure supplement 4 for full-size 1114 

blots. (C) Genome-browser snapshots of several regions containing candidate sRNAs for 1115 

optical densities at which the RNA steady-state was maximal for each candidate; the 1116 

candidate names and OD600 are indicated at the left side of the y-axes; the y-axis shows the 1117 

normalized reads (RPM: reads per million); red: RPM of RNA steady-states from an RNA-1118 

seq experiment, blue: Hfq cross-linking from a CLASH experiment; black: unique chimeric 1119 

reads found in this region. 1120 

 1121 

Source data legends 1122 

 1123 

Figure 1 - source data 1. Source data for Figure 1B 1124 

 1125 

Figure 7 - source data 1. Source data for Figure 7B 1126 

 1127 

Figure 7 - source data 2. Source data for Figure 7C 1128 

 1129 

Figure 7 - source data 3. Source data for Figure 7D 1130 

 1131 

Supplementary Figure legends 1132 

 1133 

Figure 1 - figure supplement 1. Hfq expression and Hfq binding to RNAs at different 1134 

cell densities in UV-irradiated E. coli. 1135 
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(A) Western blot analyses of Hfq levels during various growth stages. Hfq-HTF was detected 1136 

using an anti-TAP primary antibody, and a fluorescent secondary antibody. GroEL was used 1137 

as a loading control.  1138 

(B) Quantification of Hfq levels from the Western blot result. The fluorescent signal for Hfq-1139 

HTF and GroEL was measured with the LI-COR from biological replicate experiments. The 1140 

levels of Hfq were normalized to GroEL and expressed as fold-change relative to OD600 0.4.  1141 

(C) Hfq crosslinking to RNA is similar at each optical density. Autoradiogram showing the 1142 

purified radioactively labelled Hfq-RNA complexes for each OD600 after elution from the 1143 

nickel beads. Source data for (A-B) are provided as a Source Data file. 1144 

 1145 

Figure 1 - figure supplement 2. RNA-seq and Hfq CLASH replicate datasets are highly 1146 

correlated.  1147 

(A, B) Scatter plots showing the distribution of log2 Transcripts Per Million (TPM) normalized 1148 

read counts for Hfq CLASH (A) and RNA-seq (B) biological replicates. Pearson R 1149 

coefficients describing the correlation between the two independent experiments at each 1150 

OD600 are included.  1151 

 1152 

Figure 1 - figure supplement 3. Transcriptome-wide maps of Hfq binding to mRNA 1153 

genes.  1154 

(A) Heatmaps showing the distribution of Hfq binding sites across all mRNA genes at OD600 1155 

0.8 and 4.0. The genes are sorted by their sequence length (x-axis); the darker a nucleotide 1156 

is, the more Hfq is crosslinked to it. To generate the heatmap, Hfq binding clusters were 1157 

generated. A 5’ and 3’UTR length of 200 nt was used. (B) Hfq binds to poly-U tracks. 1158 

Significant k-mers (4-8 nt in length) were identified using the pyMotif tool of the pyCRAC 1159 

package (Webb et al., 2014) and the motif logo was generated using all k-mers with a Z-1160 

score > 3, with kpLogo(Wu and Bartel, 2017). (C) A more stringent selection of the genes 1161 

used to generate the distribution of Hfq binding to the transcriptome: all genes with 1162 

overlapping 5’ or 3’UTRs were removed from the analysis to avoid ‘duplicate’ counting. For 1163 

all remaining cDNAs, FDR intervals of minimum 20 nt were considered for distribution 1164 

plotting. The interval length (with UTR flanks as in the GTF annotation file) for each gene 1165 

was normalized over 100 bins (x-axis), and the fraction of hits in each bin was calculated (y-1166 

axis). 1167 

Figure 2 - figure supplement 1. Analysis of experimentally verified sRNA-and mRNA-1168 

containing chimeras in the Hfq CLASH data. 1169 

(A) The sRNAs with experimentally verified interactions are frequently paired with mRNA 1170 

fragments in Hfq CLASH chimeras. The pie chart shows how frequently sRNAs with 1171 
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experimentally verified interactions were found fused to other genomic features in the data. 1172 

For this analysis, all statistically filtered chimeras containing the sRNAs RprA, RybB, MgrR, 1173 

GcvB, DsrA, MicA, Spot42, MicL, RyhB, ChiX, SdhX and CpxQ were considered. (B) As in 1174 

(A) but now for the mRNAs with experimentally verified seed sequences. (C) Known sRNA 1175 

seed sequences of experimentally validated sRNA-mRNA interactions are frequently 1176 

recovered in chimera fragments. The heatmap shows the distribution of sRNA chimera 1177 

fragments around known seed sequences, which were normalized to an 8-nucleotide length 1178 

(indicated by the vertical dashed line). The results show that for all of the experimentally 1179 

verified sRNA-mRNA interactions found in our data, the known sRNA seed sequence is 1180 

almost always recovered. For the interaction indicated in red no overlap was found with the 1181 

known seed. (D) as in (C) but now for mRNAs with experimentally verified seed sequences 1182 

(normalized to an 8-nucleotide length). The results show that for all of the experimentally 1183 

verified interactions found in our data, the known mRNA seed sequence is always 1184 

recovered. 1185 

Figure 2 - figure supplement 2. sRNAs are most frequently found paired with mRNAs, 1186 

and vice versa, in CLASH chimeras and are enriched in seed sequences. (A) The pie 1187 

chart shows the count for the chimeras that contained sRNA fragments fused to other 1188 

genomic features. (B) As in (A), but now for all the mRNA chimeras. (C) Known sRNA seed 1189 

sequences derived from all experimentally validated sRNA-mRNA interactions are recovered 1190 

in sRNA-mRNA chimera fragments. The heatmap shows the distribution of sRNA chimera 1191 

fragments around known sRNA seed sequences (normalized to an  8-nucleotide length, 1192 

indicated by the vertical dashed line). 1193 

 1194 

Figure 2 - figure supplement 3. Interactions shared between RIL-seq and CLASH are 1195 

supported by a large number of chimeras. 1196 

The violin plot shows the distribution of chimera counts for interactions shared between 1197 

CLASH and RIL-seq, those uniquely found in the CLASH data (CLASH unique) and those 1198 

supported by less than four reads. Statistical significance between the two distributions was 1199 

calculated using a Mann-Whitney U test. 1200 

 1201 

Figure 2 - figure supplement 4. sRNAs are most frequently found paired with mRNAs, 1202 

and vice versa, in CLASH chimeras and are enriched in seed sequences.  1203 

(A-C) Same as in Figure 2 - figure supplement 2, but now for the chimeras that represent 1204 

interactions uniquely found in the CLASH data  1205 
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Figure 2 - figure supplement 5. sRNAs are most frequently found paired with mRNAs, 1206 

and vice versa, in CLASH chimeras and are enriched in seed sequences.  1207 

(A-C) Same as in Figure 2 - figure supplement 3, but now for the chimeras that represent 1208 

interactions uniquely found in the CLASH data and with read counts of less than 4. 1209 

Figure 4 - figure supplement 1. Identification of complementary sequence motifs in 1210 

predicted ChiX mRNA targets. 1211 

(A) Motif analyses of mRNA sequences found in ChiX sRNA-mRNA interactions. Because 1212 

almost all of the ChiX fragments found in chimeras mapped to the same region, a cluster 1213 

analysis was not necessary. Motif analyses was performed using the MEME suite (Bailey et 1214 

al., 2009).  The Venn diagram shows the overlap between the interactions found in all the 1215 

ChiX sRNA-mRNA interactions, those interactions uniquely found in the CLASH data 1216 

(CLASH unique) and those supported by less than four reads (chimeras < 4 reads).The 1217 

number of target sequences that contained the common motif and the E-value of MEME is 1218 

also shown. (B) Identified motifs show sequence complementarity to known seed 1219 

sequences. The green coloured nucleotide sequence indicates experimentally verified seed 1220 

sequences. The Motif Alignment Search Tool (MAST) was used to determine the degree of 1221 

complementarity between the identified motifs in putative mRNA targets and the sRNA. The 1222 

MAST p-values indicate the overall match between the identified motifs and the sRNA 1223 

sequence (Bailey et al., 2009). 1224 

 1225 

Figure 4 - figure supplement 2. Identification of complementary sequence motifs in 1226 

predicted SdsR mRNA targets. 1227 

(A-B) Motif analyses of mRNA sequences found in SdsR sRNA-mRNA interactions. Most of 1228 

the SdsR interactions with mRNAs we found were uniquely detected in our CLASH data, as 1229 

illustrated by the Venn diagram. Motif analyses was performed using MEME suite (Bailey et 1230 

al., 2009). The number of target sequences that contained the common motif and the E-1231 

value of MEME is also shown. The identified motifs in the mRNA targets also show 1232 

sequence complementarity to the sRNA sequence. The Motif Alignment Search Tool 1233 

(MAST) was used to determine the degree of complementarity between the identified motifs 1234 

in putative mRNA targets and the putative sRNA. The MAST p-values indicate the overall 1235 

match between the identified motifs and the sRNA sequence (Bailey et al., 2009). 1236 

 1237 

Figure 4 - figure supplement 3. Identification of complementary sequence motifs in 1238 

predicted GadY mRNA targets. 1239 

(A) K-means cluster analyses of sRNA sequences found in GadY sRNA-mRNA chimeras. 1240 

(B) Motif analyses of mRNA sequences found in sRNA-mRNA interactions from each 1241 
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cluster. Motif analyses was performed using MEME suite (Bailey et al., 2009). The number 1242 

of target sequences that contained the common motif and the E-value of MEME is also 1243 

shown. The Venn diagram shows the overlap between the interactions found in all the GadY 1244 

sRNA-mRNA interactions, those interactions uniquely found in the CLASH data (CLASH 1245 

unique) and those supported by less than four reads (chimeras < 4 reads). (C) Identified 1246 

motifs show sequence complementarity to known seed sequences. The Motif Alignment 1247 

Search Tool (MAST) was used to determine the degree of complementarity between the 1248 

identified motifs in putative mRNA targets and the sRNA. The MAST p-values indicate the 1249 

overall match between the identified motifs and the sRNA sequence (Bailey et al., 2009). 1250 

 1251 

Figure 4 - figure supplement 4. Identification of complementary sequence motifs in 1252 

predicted ArcZ mRNA targets. 1253 

(A) K-means cluster analyses of sRNA sequences found in ArcZ sRNA-mRNA chimeras. 1254 

The Venn diagram shows the overlap between the interactions found in all the ArcZ sRNA-1255 

mRNA interactions, those interactions uniquely found in the CLASH data (CLASH unique) 1256 

and those supported by less than four reads (chimeras < 4 reads). (B) Motif analyses of 1257 

mRNA sequences found in sRNA-mRNA interactions from each cluster. Motif analyses was 1258 

performed using MEME suite (Bailey et al., 2009). The number of target sequences that 1259 

contained the common motif and the E-value of MEME is also shown. (C) Identified motifs 1260 

show sequence complementarity to known seed sequences. The green coloured nucleotide 1261 

sequence indicates experimentally verified seed sequences. The Motif Alignment Search 1262 

Tool (MAST) was used to determine the degree of complementarity between the identified 1263 

motifs in putative mRNA targets and the sRNA. The MAST p-values indicate the overall 1264 

match between the identified motifs and the sRNA sequence (Bailey et al., 2009). 1265 

 1266 

Figure 4 - figure supplement 5. Identification of complementary sequence motifs in 1267 

predicted GadY mRNA targets. 1268 

Same as in Figure 4 - figure supplement 4, but now for CyaR. 1269 

 1270 

Figure 4 - figure supplement 6. Identification of complementary sequence motifs in 1271 

predicted GcvB mRNA targets. 1272 

Same as in Figure 4 - figure supplement 3, but now for GcvB. 1273 

 1274 

Figure 4 - figure supplement 7. Identification of complementary sequence motifs in 1275 

predicted MgrR mRNA targets. 1276 

Same as in Figure 4 - figure supplement 1, but now for MgrR. The Venn diagram shows the 1277 

overlap between the interactions found in all the MgrR sRNA-mRNA interactions, those 1278 
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interactions uniquely found in the CLASH data (CLASH unique) and those supported by less 1279 

than four reads (chimeras < 4 reads). Although the motif identified in the RIL-seq data was 1280 

not significantly enriched, we identified as second complementary sequence motif that is 1281 

significantly enriched in the CLASH unique data. 1282 

 1283 

Figure 4 - figure supplement 8. Identification of complementary sequence motifs in 1284 

predicted MicA mRNA targets. 1285 

Same as in Figure 4 - figure supplement 7, but now for MicA. 1286 

 1287 

Figure 4 - figure supplement 9. Identification of complementary sequence motifs in 1288 

predicted RybB mRNA targets. 1289 

Same as in Figure 4 - figure supplement 7, but now for RybB. 1290 

 1291 

Figure 4 - figure supplement 10. Identification of complementary sequence motifs in 1292 

predicted OmrB mRNA targets. 1293 

Same as in Figure 4 - figure supplement 7, but now for OmrB. 1294 

 1295 

Figure 4 - figure supplement 11. Identification of complementary sequence motifs in 1296 

predicted RyhB mRNA targets. 1297 

Same as in Figure 4 - figure supplement 7, but now for RyhB. 1298 

 1299 

Figure 4 - figure supplement 12. Identification of complementary sequence motifs in 1300 

predicted RprA mRNA targets. 1301 

Same as in Figure 4 - figure supplement 7, but now for RprA. 1302 

 1303 

Figure 4 - figure supplement 13. CLASH targets are highly enriched in MAPS data  1304 

(A) Predicted CyaR mRNA targets are highly enriched in MAPS data (Lalaouna et al., 2018). 1305 

The cumulative distribution plots show the cumulative frequencies of the log2-fold 1306 

enrichment of transcripts in the MAPS data relative to the control sample. Values of the 1307 

interacting mRNA partners found in the CLASH chimeras are shown in red, blue or yellow 1308 

and all the other genes are in black. (B) Predicted GcvB mRNA targets are highly enriched 1309 

in MAPS data (Lalaouna et al., 2019). The cumulative distribution plots show the cumulative 1310 

frequencies of the log2-fold enrichment of transcripts in the MAPS data relative to the control 1311 

sample. Values of the interacting mRNA partners found in the CLASH data are shown in red, 1312 

blue or yellow and all the other genes are in black. The statistical significance of the 1313 
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difference between the two distributions is represented as a p-value using Kolmogorov-1314 

Smirnov test. 1315 

 1316 

Figure 5 - figure supplement 1. Impact of the identified interactions on gene 1317 

expression levels of GcvB mRNA targets predicted by CLASH. 1318 

Plotted on the y-axis is the average expression profiles of the data from the wild-type strain. 1319 

The x-axis shows the log2-fold change in expression of the targets upon GcvB over-1320 

expression in Salmonella typhimurium (Sharma et al., 2011). We assumed that over-1321 

expression of sRNAs in S. typhimurium would have a similar effect as in E. coli. We 1322 

analysed all the mRNA fragments found in chimeras with GcvB (red), interactions only found 1323 

in the CLASH data (CLASH unique; yellow) and those supported by less than four reads 1324 

(less four chimeras; blue). The cumulative distribution plots show the cumulative frequencies 1325 

of the t-statistics values of the interacting partners in red, blue or yellow and all other genes 1326 

in black. The statistical significance of the difference between these two distributions is 1327 

represented as a p-value using Kolmogorov-Smirnov test. T-statistic values were calculated 1328 

using the eBayes function of the limma package (Ritchie et al., 2015). 1329 

 1330 

Figure 5 - figure supplement 2. Impact of the identified interactions on gene 1331 

expression levels of CyaR mRNA targets predicted by CLASH. 1332 

(A) Plotted on the y-axis is the average expression profiles of the data from the wild-type 1333 

strain. The x-axis shows the log2-fold change in expression of the targets upon CyaR over-1334 

expression in Escherichia coli (De Lay and Gottesman, 2009). We analysed all the mRNA 1335 

fragments found in chimeras with CyaR (red), interactions only found in the CLASH data 1336 

(CLASH unique; yellow) and those supported by less than four reads (less four chimeras; 1337 

blue). The cumulative distribution plots show the cumulative frequencies of the t-statistics 1338 

values of the interacting partners in red, blue or yellow and all other genes in black. The 1339 

statistical significance of the difference between these two distributions is represented as a 1340 

p-value using Kolmogorov-Smirnov test. 1341 

 1342 

Figure 5 - figure supplement 3. Impact of the identified interactions on gene 1343 

expression levels of Spot42 mRNA targets predicted by CLASH. 1344 

Plotted on the y-axis is the average expression profiles of the data from the wild-type strain. 1345 

The x-axis shows the log2-fold change in expression of the targets upon Spot42 over-1346 

expression in Escherichia coli (Beisel and Storz, 2011). We analysed all the mRNA 1347 

fragments found in chimeras with Spot42, the predicted interactions only found in the 1348 

CLASH data (CLASH unique) and those supported by less than four reads (less four 1349 

chimeras). The cumulative distribution plots show the cumulative frequencies of the t-1350 
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statistics values of the interacting partners in red, blue or yellow and all other genes in black. 1351 

The statistical significance of the difference between these two distributions is represented 1352 

as a p-value using Kolmogorov-Smirnov test. T-statistic values were calculated using the 1353 

eBayes function of the limma package (Ritchie et al., 2015). 1354 

 1355 

Figure 5 - figure supplement 4. Impact of the identified interactions on gene 1356 

expression levels of ArcZ mRNA targets predicted by CLASH. 1357 

Plotted on the y-axis is the average expression profiles of the data from the wild-type strain. 1358 

The x-axis shows the log2-fold change in expression of the targets upon ArcZ over-1359 

expression in Salmonella typhimurium (Papenfort et al., 2009). We assumed that over-1360 

expression of sRNAs in S. typhimurium would have a similar effect as in E. coli. We 1361 

analysed all the mRNA fragments found in chimeras with ArcZ, the predicted interactions 1362 

only found in the CLASH data (CLASH unique) and those supported by less than four reads 1363 

(less four chimeras). The cumulative distribution plots show the cumulative frequencies of 1364 

the t-statistics values of the interacting partners in red, blue or yellow and all other genes in 1365 

black. The statistical significance of the difference between these two distributions is 1366 

represented as a p-value using Kolmogorov-Smirnov test. T-statistic values were calculated 1367 

using the eBayes function of the limma package (Ritchie et al., 2015). 1368 

 1369 

Figure 6 - figure supplement 1. sRNA-RNA interactions identified by CLASH are 1370 

growth-stage specific. sRNA-sRNA network generated from the statistically significant 1371 

CLASH interactions from two biological replicates, recovered at three main growth stages: 1372 

exponential (OD600 0.4 and 0.8), transition (OD600 1.2, 1.8, 2.4) and early stationary (OD600 1373 

3.0 and 4.0). The thickness of the edges is proportional to the log2(unique chimera count for 1374 

each interaction). Only sRNAs transcribed from independent promoters were included in the 1375 

analysis. 1376 

 1377 

Figure 6 - figure supplement 2. Interactions between ArcZ, CyaR and GcvB are 1378 

conserved. Alignments of ArcZ, CyaR and GcvB were compiled as previously 1379 

described(van Nues et al., 2016). Names of the enteric bacteria from which the sequence 1380 

was retrieved are given on the left. Indicated are possible stem-loops (brackets), seed 1381 

regions (boxed in dashed lines) and their interactions with various sections of ArcZ, CyaR or 1382 

GcvB (blue and purple bars) or with other sRNAs and mRNAs (black bars). The CyaR 1383 

sequence indicated with a blue bar is predicted to interact with two regions in GcvB (see 1384 

blue bars in GcvB alignment), including the second seed sequence. A second interaction 1385 

(pink bars) involves the seed sequence regions of CyaR and GcvB.  1386 
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 1387 

Figure 8 - figure supplement 1. Identification of complementary sequence motifs in 1388 

predicted glnA-3’UTR mRNA targets. 1389 

(A) Motif analyses of mRNA sequences found in glnA-3’UTR-mRNA interactions. All of the 1390 

glnA-3’UTR interactions with mRNAs we found were only detected in our CLASH data. Motif 1391 

analyses was performed using MEME suite (Bailey et al., 2009). The number of target 1392 

sequences that contained the common motif and the E-value of MEME is also shown. (B) 1393 

Identified motifs show sequence complementarity to the 3’UTR of glnA. Note that a very 1394 

similar motif was identified in the RIL-seq data for glnA-3’UTR mRNA targets (Melamed et 1395 

al., 2016). The Motif Alignment Search Tool (MAST) was used to determine the degree of 1396 

complementarity between the identified motifs in putative mRNA targets and the putative 1397 

sRNA. The MAST p-values indicate the overall match between the identified motifs and the 1398 

sRNA sequence (Bailey et al., 2009). 1399 

 1400 

Figure 8 - figure supplement 2. Identification of complementary sequence motifs in 1401 

predicted CpxQ mRNA targets. 1402 

(A) Motif analyses of mRNA sequences found in cpxP-3’UTR/CpxQ interactions. The Venn 1403 

diagram shows the overlap between the interactions found in all the CpxQ sRNA-mRNA 1404 

interactions, those interactions uniquely found in the CLASH data (CLASH unique) and 1405 

those supported by less than four reads (chimeras < 4 reads). Motif analyses was performed 1406 

using MEME suite (Bailey et al., 2009). The number of target sequences that contained the 1407 

common motif and the E-value of MEME is also shown. (B) Identified motifs show sequence 1408 

complementarity to the 3’UTR of cpxP. These data are in good agreement with CpxQ mRNA 1409 

target motifs identified in the RIL-seq data (Melamed et al., 2016). The Motif Alignment 1410 

Search Tool (MAST) was used to determine the degree of complementarity between the 1411 

identified motifs in putative mRNA targets and the putative sRNA. The MAST p-values 1412 

indicate the overall match between the identified motifs and the sRNA sequence (Bailey et 1413 

al., 2009). The green coloured nucleotide sequence indicates experimentally verified seed 1414 

sequences (Chao and Vogel, 2016). 1415 

  1416 
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Figure 8 - figure supplement 3. Identification of complementary sequence motifs in 1417 

predicted GadF mRNA targets 1418 

As in Figure 8 – supplement 2 but now for the GadF sRNA that originates from the 3’ end of 1419 

the gadE mRNA (this work and (Melamed et al., 2016)) 1420 

 1421 

Figure 8 - figure supplement 4. YgaM, gadE and malG contain sRNAs in their 3’UTRs.  1422 

Validation of malG 3’UTR (MalH), ygaM 3’UTR (YgaN) and gadE 3’UTR (GadF) sRNAs by 1423 

Northern blot. Total RNA extracted from cells at the indicated optical densities (OD600) was 1424 

resolved on 8% PAA-UREA gels and subjected to Northern blotting using oligos that 1425 

hybridize with the 3’UTR of the respective transcripts. The asterisk indicates cross-reactivity 1426 

of the probe with the 5S rRNA. The locations of the 3’UTR-derived fragments are indicated. 1427 

MalH and YgaN are ~110nt, whereas the GadF fragment is ~ 90nt.  1428 

 1429 

Figure 8 - figure supplement 5. Hfq CLASH identifies known interactions between 3’-1430 

UTR derived sRNAs and mRNA targets. 1431 

(A-C) Heatmaps illustrating the number of chimeric fragments containing MicL (A) and SdhX 1432 

(C) and where in the sRNA they map with respect to the known seed sequences(s). The 1433 

boxes above indicate the known, experimentally validated seed sequences for the 1434 

respective sRNAs. (B) The predicted base-pairing between MicL and a known mRNA target 1435 

(lpp). (D) The base-paring between SdhX and known targets (katG and ackA; 2 and 3 1436 

chimeras, respectively) represented by low chimera count are shown. The grey colored 1437 

nucleotides represent the binding site in the mRNA target. The predicted interactions 1438 

between the sRNAs and their mRNA targets are fully consistent with the literature (De Mets 1439 

et al., 2018; Guo et al., 2014; Miyakoshi et al., 2018). 1440 

 1441 

Figure 8 - figure supplement 6. Analysis of Exonuclease (TEX) RNA-seq datasets. 1442 

(A, B) Analysis of Terminator 5’-Phosphate Dependent Exonuclease (TEX) RNA-seq 1443 

datasets (Thomason et al., 2015) indicates that YgaN has an independent promoter, while 1444 

MalH is a degradation product of the malEFG operon. Genome browser tracks showing the 1445 

location and normalized reads of ygaM and malG fragments in the absence of TEX (–TEX) 1446 

and in the presence of TEX (+TEX). The ygaM and putative YgaN promoters are indicated. 1447 

Independently transcribed YgaN could be further processed by RNases, at the site marked 1448 

with a dashed vertical line. 1449 

 1450 

Supplementary File legends 1451 

 1452 
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Supplementary File 1. Hyb pipeline output from the merged Hfq CLASH data.   1453 

Chromosome indicates the E. coli chromosome, sequence start and sequence end are the 1454 

positions in the chimeric read that correspond to the first and second fragment. 1455 

Chromosome start and chromosome end are the positions in the E. coli K12 reference 1456 

genome. 1457 

 1458 

Supplementary File 2. Statistically filtered data. Chimeric reads were subsequently 1459 

analyzed using a statistical pipeline described by (Waters et al., 2017). Only chimeric reads 1460 

that had a Benjami-Hochberg adjusted p-value  (bh_adj_p_value) of 0.05 or less were 1461 

considered 1462 

The last three columns indicate in which growth phases the interactions were identified. 1463 

Min. MFE indicates the minimal folding energies of the chimera, which was calculated using 1464 

RNADuplex from the ViennaRNA package (Lorenz et al., 2011).The two pairs in the 1465 

intermolecular base-pairs and structure columns are separated by "&". 1466 

 1467 

Supplementary File 3. Overview of sRNA-mRNA interactions found in the Hfq CLASH data 1468 

and compared to the RIL-seq data. Shown are the statisitcally filtered sRNA-mRNA 1469 

interactions identified in the Hfq CLASH data. Genomic sequences of the sRNA and mRNA 1470 

fragments found in the chimeras are also provided. Total_hybrids indicates the total number 1471 

of interactions involving these sequences that were found. Min. MFE indicates the minimal 1472 

folding enrgies of the chimera, which was calculated using RNADuplex from the ViennaRNA 1473 

package (Lorenz et al., 2011). The last column indicates which of the sRNA-mRNA 1474 

interactions were also found in the RIL-seq S-chimera data (Melamed et al., 2016). 1475 

 1476 

Supplementary File 4. Overview of sRNA-sRNA interactions found in the Hfq CLASH data 1477 

and compared to the RIL-seq data. Shown are the statistically filtered sRNA-sRNA 1478 

interactions identified in the Hfq CLASH data. Genomic sequences of the sRNA fragments 1479 

found in the chimeras are also provided. Total_hybrids indicates the total number of 1480 

interactions involving these sequences that were found. Min. MFE indicates the minimal 1481 

folding enrgies of the chimera, which was calculated using RNADuplex from the ViennaRNA 1482 

package (Lorenz et al., 2011). The last column indicates which of the sRNA-mRNA 1483 

interactions were also found in the RIL-seq S-chimera data (Melamed et al., 2016). 1484 

 1485 

Supplementary File 5. Overview of putative 3'UTR derived sRNAs. 3'UTR-mRNA and 1486 

mRNA-3'UTR interactions were isolated from the statistically filtered data and compared 1487 

against the RILseq data (Melamed et al., 2016), Salmonella TIERseq data  (Chao et al., 1488 

2012) and RNA-seq data that was used transcription start sites in E. coli  (Thomason et al., 1489 
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2015). TEX insensitive are RNA fragments in 3'UTRs that are not sensitive to Terminator 5’-1490 

Phosphate Dependent Exonuclease treatment and therefore may be generated by an 1491 

independent promoter. TEX sensitive are RNA fragments that likely have 5' 1492 

monophosphates as, according to the TEX data, they were degraded by TEX. 1493 

 1494 

Supplementary File 6. Overview of 3'UTR-mRNA interactions found in the Hfq CLASH data 1495 

and compared to the RIL-seq data. Shown are the statistically filtered 3'UTR-mRNA 1496 

interactions identified in the Hfq CLASH data. Genomic sequences of the 3'UTR and mRNA 1497 

fragments found in the chimeras are also provided. Total_hybrids indicates the total number 1498 

of interactions involving these sequences that were found. Min. MFE indicates the minimal 1499 

folding enrgies of the chimera, which was calculated using RNADuplex from the ViennaRNA 1500 

package (Lorenz et al., 2011). The last column indicates which of the sRNA-mRNA 1501 

interactions were also found in the RIL-seq S-chimera data (Melamed et al., 2016). The 1502 

mRNA fragment location column indicates where in the mRNA target the putative 3'UTR-1503 

derived sRNA was base-paired. 1504 

 1505 

Supplementary File 7. Experimentally validated interactions in the statistically filtered Hfq 1506 

CLASH data. Chimeric reads were analyzed using a statistical pipeline described by (Waters 1507 

et al., 2017). Only chimeric reads that had a Benjami-Hochberg adjusted p-value  1508 

(bh_adj_p_value) of 0.05 or less were considered. Shown are the sRNA-mRNA interactions 1509 

that were experimentally validated, retrieved from sRNATarbase 3.0 (Wang et al., 2016) and 1510 

recent literature (Bianco et al., 2019; Chao and Vogel, 2016; De Mets et al., 2018; Guo et 1511 

al., 2014; Lalaouna et al., 2015b; Miyakoshi et al., 2018). Min. MFE indicates the minimal 1512 

folding energies of the chimera, which was calculated using RNADuplex from the 1513 

ViennaRNA package (Lorenz et al., 2011). The last three columns indicate in which growth 1514 

phases the interactions were identified. 1515 

 1516 

Supplementary File 8. Motif analyses of chimeric fragments that mapped to 5' UTRs. 1517 

PyMotif from the pyCRAC package was used for these analyses. For the motif search 1518 

analyses we first clustered overlapping chimeric fragments into a single contig. For the 1519 

5'UTR motif analyses we used 356 clusters. 1520 

 1521 

Supplementary File 9. Motif analyses of chimeric fragments that mapped to 3' UTRs. 1522 

PyMotif from the pyCRAC package was used for these analyses. For the motif search 1523 

analyses we first clustered overlapping chimeric fragments into a single contig. For the 1524 

3'UTR motif analyses we used 188 clusters. 1525 

 1526 
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 1527 

Supplementary File 10. Oligonucleotides used in this study 1528 

 1529 

Supplementary Source data legends 1530 

 1531 

Figure 1 - figure supplement 1 - source data 1. Source data for Figure 1 - figure 1532 

supplement 1A and B. 1533 
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